Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Dec 3;29(48):15100-6.
doi: 10.1021/la402818g. Epub 2013 Nov 19.

Influence of the redox indicator reaction on single-nanoparticle collisions at mercury- and bismuth-modified Pt ultramicroelectrodes

Affiliations

Influence of the redox indicator reaction on single-nanoparticle collisions at mercury- and bismuth-modified Pt ultramicroelectrodes

Radhika Dasari et al. Langmuir. .

Abstract

Single-Pt nanoparticles (NPs) can be detected electrochemically by measuring the current-time (i-t) response associated with both hydrazine oxidation and proton reduction during individual Pt NP collisions with noncatalytic Hg- and Bi-modified Pt ultramicroelectrodes (Hg/Pt and Bi/Pt UMEs, respectively). At Hg/Pt UMEs, the i-t response for both hydrazine oxidation and proton reduction consists of repeated current "spikes" that return to the background level as Hg poisons the Pt NP after collision with the Hg/Pt UME due to amalgamation and deactivation of the redox reaction. Furthermore, at a Hg/Pt UME, the applied potential directly influences the interfacial surface tension (electrocapillarity) that also impacts the observed i-t response for single-Pt NP collisions for proton reduction that exhibits a faster decay of current (0.7-4 ms) to background levels than hydrazine oxidation (2-5 s). Because the surface tension of Hg is lower (-0.9 V), Pt NPs possibly react faster with Hg (amalgamate at a faster rate), resulting in sharp current spikes for proton reduction compared to hydrazine oxidation. In contrast, a stepwise "staircase" i-t response is observed for proton reduction for single-Pt NP collisions at a Bi/Pt UME. This different response suggests that electrostatic forces of negatively charged citrate-capped Pt NPs also influence the i-t response at more negative applied potentials, but the Pt NPs do not poison the electrochemical activity at Bi/Pt UMEs.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources