Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Nov;26(3):201-17.
doi: 10.1007/BF00176953.

Bacterial production in a mesohumic lake estimated from [(14)C]leucine incorporation rate

Affiliations

Bacterial production in a mesohumic lake estimated from [(14)C]leucine incorporation rate

T Tulonen. Microb Ecol. 1993 Nov.

Abstract

Incorporation of [(14)C]leucine into proteins of bacteria was studied in a temperate mesohumic lake. The maximum incorporation of [(14)C] leucine was reached at a concentration of 30 nM determined in dilution cultures. Growth experiments were used to estimate factors for converting leucine incorporation to bacterial cell numbers or biomass. The initially high conversion factors calculated by the derivative method decreased to lower values after the bacteria started to grow. Average conversion factors were 7.09 × 10(16) cells mol(-1) and 7.71 × 10(15) μm(3) mol(-1), if the high initial values were excluded. Using the cumulative method, the average conversion factor was 5.38 × 10(15) μm(-3) mol(-1) I . The empirically measured factor converting bacterial biomass to carbon was 0.36 pg C μm(-3) or 33.1 fg C cell(-1). Bacterial production was highest during the growing season, ranging between 1.8 and 13.2 μg C liter(-1) day(-1), and lowest in winter, at 0.2-2.9 μg C liter(-1) day(-1). Bacterial production showed clear response to changes in the phytoplankton production, which indicates that photosynthetically produced dissolved compounds were used by bacteria. In the epilimnion bacterial production was, on average, 19-33% of primary production. Assuming 50% growth efficiency for bacteria, the allochthonous organic carbon could have also been an additional energy and carbon source for bacteria, especially in autumn and winter. In winter, a strong relationship was found between temperature and bacterial production. The measuring of [(14)C]leucine incorporation proved to be a simple and useful method for estimating bacterial production in humic water. However, an appropriate amount of [(14)C]leucine has to be used to ensure the maximum uptake of label and to minimize isotope dilution.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Appl Environ Microbiol. 1977 Apr;33(4):940-6 - PubMed
    1. Appl Environ Microbiol. 1986 Mar;51(3):664-7 - PubMed
    1. Appl Environ Microbiol. 1990 May;56(5):1303-9 - PubMed
    1. Appl Environ Microbiol. 1986 Jun;51(6):1199-204 - PubMed
    1. Appl Environ Microbiol. 1987 Jun;53(6):1298-303 - PubMed