Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jan;174(1):107-14.
doi: 10.1001/jamainternmed.2013.11912.

Atrial fibrillation and the risk of myocardial infarction

Affiliations

Atrial fibrillation and the risk of myocardial infarction

Elsayed Z Soliman et al. JAMA Intern Med. 2014 Jan.

Erratum in

  • JAMA Intern Med. 2014 Feb 1;174(2):308

Abstract

Importance: Myocardial infarction (MI) is an established risk factor for atrial fibrillation (AF). However, the extent to which AF is a risk factor for MI has not been investigated.

Objective: To examine the risk of incident MI associated with AF.

Design, setting, and participants: A prospective cohort of 23,928 participants residing in the continental United States and without coronary heart disease at baseline were enrolled from the Reasons for Geographic and Racial Differences in Stroke (REGARDS) cohort between 2003 and 2007, with follow-up through December 2009.

Main outcomes and measures: Expert-adjudicated total MI events (fatal and nonfatal).

Results: Over 6.9 years of follow-up (median 4.5 years), 648 incident MI events occurred. In a sociodemographic-adjusted model, AF was associated with about 2-fold increased risk of MI (hazard ratio [HR], 1.96 [95% CI, 1.52-2.52]). This association remained significant (HR, 1.70 [95% CI, 1.26-2.30]) after further adjustment for total cholesterol, high-density lipoprotein cholesterol, smoking status, systolic blood pressure, blood pressure-lowering drugs, body mass index, diabetes, warfarin use, aspirin use, statin use, history of stroke and vascular disease, estimated glomerular filtration rate, albumin to creatinine ratio, and C-reactive protein level. In subgroup analysis, the risk of MI associated with AF was significantly higher in women (HR, 2.16 [95% CI, 1.41-3.31]) than in men (HR, 1.39 [95% CI, 0.91-2.10]) and in blacks (HR, 2.53 [95% CI, 1.67-3.86]) than in whites (HR, 1.26 [95% CI, 0.83-1.93]); for interactions, P = .03 and P = .02, respectively. On the other hand, there were no significant differences in the risk of MI associated with AF in older (≥75 years) vs younger (<75 years) participants (HR, 2.00 [95% CI, 1.16-3.35] and HR, 1.60 [95% CI, 1.11-2.30], respectively); for interaction, P = .44.

Conclusions and relevance: AF is independently associated with an increased risk of incident MI, especially in women and blacks. These findings add to the growing concerns of the seriousness of AF as a public health burden: in addition to being a well-known risk factor for stroke, AF is also associated with increased risk of MI.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest Disclosures: None reported.

Figures

Figure 1
Figure 1
Unadjusted Cumulative Incidence of Myocardial Infarction by Baseline Atrial Fibrillation Status
Figure 2
Figure 2
Sex-Race Stratified Age-Adjusted Incidence Rates and Multivariable-Adjusted Hazard Ratios of Myocardial Infarction by Atrial Fibrillation (AF) Status Data specified across horizontal braces are reported as hazard ratio (95% CI). All models were adjusted for age, sex, race, region of residence, education level, income, total cholesterol, high-density lipoprotein cholesterol, smoking status, systolic blood pressure, body mass index, diabetes, blood pressure–lowering drug use, warfarin use, aspirin use, statin use, history of noncardiac vascular disease (stroke, peripheral artery disease, and aortic aneurysm), estimated glomerular filtration rate lower than 60 mL/min/1.73 m2, log-transformed C-reactive protein, and log-transformed albumin to creatinine ratio.

Comment in

References

    1. Go AS, Hylek EM, Phillips KA, et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA. 2001;285(18):2370–2375. - PubMed
    1. Miyasaka Y, Barnes ME, Gersh BJ, et al. Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation. 2006;114(2):119–125. - PubMed
    1. Benjamin EJ, Wolf PA, D’Agostino RB, Silbershatz H, Kannel WB, Levy D. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation. 1998;98(10):946–952. - PubMed
    1. Miyasaka Y, Barnes ME, Bailey KR, et al. Mortality trends in patients diagnosed with first atrial fibrillation: a 21-year community-based study. J Am Coll Cardiol. 2007;49(9):986–992. - PubMed
    1. Conen D, Chae CU, Glynn RJ, et al. Risk of death and cardiovascular events in initially healthy women with new-onset atrial fibrillation. JAMA. 2011;305(20):2080–2087. - PMC - PubMed

Publication types

MeSH terms