Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Nov 5:14:115.
doi: 10.1186/1471-2350-14-115.

Screening of Y chromosome microdeletions in 46,XY partial gonadal dysgenesis and in patients with a 45,X/46,XY karyotype or its variants

Affiliations

Screening of Y chromosome microdeletions in 46,XY partial gonadal dysgenesis and in patients with a 45,X/46,XY karyotype or its variants

Ana Paula dos Santos et al. BMC Med Genet. .

Abstract

Background: Partial and mixed gonadal dysgenesis (PGD and MGD) are characterized by genital ambiguity and the finding of either a streak gonad and a dysgenetic testis or two dysgenetic testes. The karyotype in PGD is 46,XY, whereas a 45,X/46,XY mosaicism or its variants (more than two lineages and/or structural abnormalities of the Y chromosome) is generally found in MGD. Such mosaics are also compatible with female phenotype and Turner syndrome, ovotesticular disorder of sex development, and infertility in men with normal external genitalia. During the last few years, evidences of a linkage between Y microdeletions and 45,X mosaicism have been reported. There are also indications that the instability caused by such deletions might be more significant in germ cells. The aim of this work was to investigate the presence of Y chromosome microdeletions in individuals with PGD and in those with 45,X/46,XY mosaicism or its variants and variable phenotypes.

Methods: Our sample comprised 13 individuals with PGD and 15 with mosaicism, most of them with a MGD phenotype (n = 11). Thirty-six sequence tagged sites (STS) spanning the male specific region (MSY) on the Y chromosome (Yp, centromere and Yq) were analyzed by multiplex PCR and some individual reactions.

Results: All STS showed positive amplifications in the PGD group. Conversely, in the group with mosaicism, six individuals with MGD had been identified with Yq microdeletions, two of them without structural abnormalities of the Y chromosome by routine cytogenetic analysis. The deleted STSs were located within AZFb and AZFc (Azoospermia Factor) regions, which harbor several genes responsible for spermatogenesis.

Conclusions: Absence of deletions in individuals with PGD does not confirm the hypothesis that instability of the Y chromosome in the gonads could be one of the causes of such condition. However, deletions identified in the second group indicate that mosaicism may be associated with Y chromosome abnormalities detectable only at the molecular level. If patients with mosaicism and Y microdeletions reared as males decide to undergo in vitro fertilization, Y chromosomes which tend to be unstable during cell division may be transmitted to offspring.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Agarose gel stained with ethidium bromide showing the PCR fragments of MIX 7 and 4. A – Five STS were amplification in all patients of DGP group. M – Molecular weight marker (Ladder 1Kb); B – Blank; Individuals: 2, 3, 4, 5, 6, 9, 7, 8, 13 e 12 (Table 1) e 4* (Table 2); ♀ – Female control; ♂ - Male control. B – Absent amplification of STS sY149 for individuals 10 and 6, and no amplification of STS sY127 for individual 6. M – Molecular weight marker (Ladder 1Kb); B - Blank; Individuals 5*, 10*, 12* (Table 1) and individuals 10, 1, 9, 3, 6, 2, 5 (Table 2); ♀ – Female control; ♂ - Male control.
Figure 2
Figure 2
Schematic description of microdeletions found in six individuals in the MOS group. The figure shows the location of identified deletions for each patient and the position of each deletion in relation to the AZFa, AZFb and AZFc regions. formula image = Fragment present. formula image = Fragment absent.

References

    1. Lee PA, Houk CP, Ahmed SF, Hughes IA. International Consensus Conference on Intersex organized by the Lawson Wilkins Pediatric Endocrine Society and the European Society for Pediatric Endocrinology. Consensus statement on management of intersex disorders. International Consensus Conference on Intersex. Pediatrics. 2006;118:488–500. doi: 10.1542/peds.2006-0738. - DOI - PubMed
    1. Rohatgi M, Gupta DK, Menon PS, Verma IC, Mathur M. Mixed gonadal dysgenesis and dysgenetic male pseudohermaphroditism - a critical analysis. Indian J Pediatr. 1992;59(4):487–500. doi: 10.1007/BF02751566. - DOI - PubMed
    1. Hawkins JR, Taylor A, Goodfellow PN, Migeon CJ, Smith KD, Berkovitz GD. Evidence for increased prevalence of SRY mutations in XY females with complete rather than partial gonadal dysgenesis. Am J Hum Gen. 1992;51:979–984. - PMC - PubMed
    1. Fuqua JS, McLaughlin J, Perlman EJ, Berkovitz GD. Analysis of the SRY gene in gonadal tissue of subjects with 46,XY gonadal dysgenesis. J Clin Endocrinol Metab. 1997;82(2):701–702. doi: 10.1210/jc.82.2.701. - DOI - PubMed
    1. Tagliarini EB, Assumpção JG, Scolfaro MR, Mello MP, Maciel-Guerra AT, Guerra Júnior G, Hackel C. Mutations in SRY and WT1 genes required for gonadal development are not responsible for XY partial gonadal dysgenesis. Br J Med Biol Res. 2005;38:17–25. - PubMed

Publication types

Supplementary concepts

LinkOut - more resources