High resolution whole mount in situ hybridization within zebrafish embryos to study gene expression and function
- PMID: 24192694
- PMCID: PMC4396715
- DOI: 10.3791/50644
High resolution whole mount in situ hybridization within zebrafish embryos to study gene expression and function
Abstract
This article focuses on whole-mount in situ hybridization (WISH) of zebrafish embryos. The WISH technology facilitates the assessment of gene expression both in terms of tissue distribution and developmental stage. Protocols are described for the use of WISH of zebrafish embryos using antisense RNA probes labeled with digoxigenin. Probes are generated by incorporating digoxigenin-linked nucleotides through in vitro transcription of gene templates that have been cloned and linearized. The chorions of embryos harvested at defined developmental stages are removed before incubation with specific probes. Following a washing procedure to remove excess probe, embryos are incubated with anti-digoxigenin antibody conjugated with alkaline phosphatase. By employing a chromogenic substrate for alkaline phosphatase, specific gene expression can be assessed. Depending on the level of gene expression the entire procedure can be completed within 2-3 days.
Similar articles
-
High-resolution in situ hybridization to whole-mount zebrafish embryos.Nat Protoc. 2008;3(1):59-69. doi: 10.1038/nprot.2007.514. Nat Protoc. 2008. PMID: 18193022
-
In situ hybridization on whole-mount zebrafish embryos and young larvae.Methods Mol Biol. 2014;1211:53-67. doi: 10.1007/978-1-4939-1459-3_5. Methods Mol Biol. 2014. PMID: 25218376
-
Whole-mount in situ hybridization of Hawaiian bobtail squid (Euprymna scolopes) embryos with DIG-labeled riboprobes: II. Embryo preparation, hybridization, washes, and immunohistochemistry.Cold Spring Harb Protoc. 2009 Nov;2009(11):pdb.prot5322. doi: 10.1101/pdb.prot5322. Cold Spring Harb Protoc. 2009. PMID: 20150061
-
Expression analysis of murine genes using in situ hybridization with radioactive and nonradioactively labeled RNA probes.Methods Mol Biol. 2006;326:61-87. doi: 10.1385/1-59745-007-3:61. Methods Mol Biol. 2006. PMID: 16780194 Review.
-
Nonradioactive in situ hybridization on frozen sections and whole mounts.Methods Mol Biol. 2006;326:89-102. doi: 10.1385/1-59745-007-3:89. Methods Mol Biol. 2006. PMID: 16780195 Review.
Cited by
-
An Optimized Small Tissue Handling System for Immunohistochemistry and In Situ Hybridization.PLoS One. 2016 Aug 4;11(8):e0159991. doi: 10.1371/journal.pone.0159991. eCollection 2016. PLoS One. 2016. PMID: 27489962 Free PMC article.
-
Mitochondrial connections with immune system in Zebrafish.Fish Shellfish Immunol Rep. 2021 Aug 14;2:100019. doi: 10.1016/j.fsirep.2021.100019. eCollection 2021 Dec. Fish Shellfish Immunol Rep. 2021. PMID: 36420514 Free PMC article. Review.
-
Mechanical spinal cord transection in larval zebrafish and subsequent whole-mount histological processing.STAR Protoc. 2022 Jan 17;3(1):101093. doi: 10.1016/j.xpro.2021.101093. eCollection 2022 Mar 18. STAR Protoc. 2022. PMID: 35535165 Free PMC article.
-
Knockout of dhx38 Causes Inner Ear Developmental Defects in Zebrafish.Biomedicines. 2024 Dec 26;13(1):20. doi: 10.3390/biomedicines13010020. Biomedicines. 2024. PMID: 39857604 Free PMC article.
-
TRIM28 regulates sprouting angiogenesis through VEGFR-DLL4-Notch signaling circuit.FASEB J. 2020 Nov;34(11):14710-14724. doi: 10.1096/fj.202000186RRR. Epub 2020 Sep 12. FASEB J. 2020. PMID: 32918765 Free PMC article.
References
-
- Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet. 2007;8:353–367. - PubMed
-
- Lawson ND, Wolfe SA. Forward and reverse genetic approaches for the analysis of vertebrate development in the zebrafish. Dev. Cell. 2011;21:48–64. - PubMed
-
- Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev. Dyn. 1995;203:253–310. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases