Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1986 Feb;87(2):305-26.
doi: 10.1085/jgp.87.2.305.

Two modes of gating during late Na+ channel currents in frog sartorius muscle

Review

Two modes of gating during late Na+ channel currents in frog sartorius muscle

J B Patlak et al. J Gen Physiol. 1986 Feb.

Abstract

Na+ currents were measured during 0.4-s depolarizing pulses using the cell-attached variation of the patch-clamp technique. Patches on Cs-dialyzed segments of sartorius muscle of Rana pipiens contained an estimated 25-500 Na+ channels. Three distinct types of current were observed after the pulse onset: a large initial surge of inward current that decayed within 10 ms (early currents), a steady "drizzle" of isolated, brief, inward unitary currents (background currents), and occasional "cloudbursts" of tens to hundreds of sequential unitary inward currents (bursts). Average late currents (background plus bursts) were 0.12% of peak early current amplitude at -20 mV. 85% of the late currents were carried by bursting channels. The unit current amplitude was the same for all three types of current, with a conductance of 10.5 pS and a reversal potential of +74 mV. The magnitudes of the three current components were correlated from patch to patch, and all were eliminated by slow inactivation. We conclude that all three components were due to Na+ channel activity. The mean open time of the background currents was approximately 0.25 ms, and the channels averaged 1.2 openings for each event. Neither the open time nor the number of openings of background currents was strongly sensitive to membrane potential. We estimated that background openings occurred at a rate of 0.25 Hz for each channel. Bursts occurred once each 2,000 pulses for each channel (assuming identical channels). The open time during bursts increased with depolarization to 1-2 ms at -20 mV, whereas the closed time decreased to less than 20 ms. The fractional open time during bursts was fitted with m infinity 3 using standard Na+ channel models. We conclude that background currents are caused by a return of normal Na+ channels from inactivation, while bursts are instances where the channel's inactivation gate spontaneously loses its function for prolonged periods.

PubMed Disclaimer

References

    1. J Physiol. 1968 Jul;197(1):233-53 - PubMed
    1. J Physiol. 1952 Aug;117(4):500-44 - PubMed
    1. J Physiol. 1970 Dec;211(3):653-78 - PubMed
    1. J Gen Physiol. 1973 Oct;62(4):375-91 - PubMed
    1. Pflugers Arch. 1975;357(1-2):145-8 - PubMed

Publication types