Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Nov 7:13:243.
doi: 10.1186/1471-2148-13-243.

Sex-specific aspects of endogenous retroviral insertion and deletion

Affiliations

Sex-specific aspects of endogenous retroviral insertion and deletion

Patrick Gemmell et al. BMC Evol Biol. .

Abstract

Background: We wish to understand how sex and recombination affect endogenous retroviral insertion and deletion. While theory suggests that the risk of ectopic recombination will limit the accumulation of repetitive DNA in areas of high meiotic recombination, the experimental evidence so far has been inconsistent. Under the assumption of neutrality, we examine the genomes of eighteen species of animal in order to compute the ratio of solo-LTRs that derive from insertions occurring down the male germ line as opposed to the female one (male bias). We also extend the simple idea of comparing autosome to allosome in order to predict the ratio of full-length proviruses we would expect to see under conditions of recombination linked deletion or otherwise.

Results: Using our model, we predict the ratio of allosomal to autosomal full-length proviruses to lie between32 and 23 under increasing male bias in mammals and between 1 and 2 under increasing male bias in birds. In contrast to our expectations, we find that a pattern of male bias is not universal across species and that there is a frequent overabundance of full-length proviruses on the allosome beyond the ratios predicted by our model.

Conclusions: We use our data as a whole to argue that full-length proviruses should be treated as deleterious mutations or as effectively neutral mutations whose persistence in a full-length state is linked to the rate of meiotic recombination and whose origin is not universally male biased. These conclusions suggest that retroviral insertions on the allosome may be more prolific and that it might be possible to identify mechanisms of replication that are enhanced in the female sex.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Predicted ratios. Predicted ratios of full-length proviruses on the allosome (X or Z) to the autosome under recombination linked and non recombination linked deletion scenarios. Predictions are shown for both the XY sex-determination system and the ZW sex-determination system. For any given bias (β) and sex-determination system we make two predictions as to the allosome-to-autosome ratio of full-length proviruses (p). A value of β greater than one is a male bias and a value of β less than one is a female bias. Under the ZW system (e.g. in birds) both male bias and a lack of recombination may contribute to an excess of ERVs on the Z chromosome when compared to the autosome.
Figure 2
Figure 2
Observed ratios. Observed ratios of full-length proviruses and solo-LTRs on the allosome (X or Z) to the autosome for the genomes of 15 mammals and 3 birds. Vertical lines mark the key ratios 23, 1, 32 and 2. Asterisks mark the genomes we consider as trustworthy and discuss in the Results section. Mammalian full-length provirus ratios typically lie beyond 3/2, the maximum predicted value under an assumption of male-bias. Mammalian solo-LTRs are generally more evenly distributed between autosome and allosome. Mammalian solo-LTRs are also generally relatively less abundant on the allosome than full-length proviruses.

References

    1. Katzourakis A, Tristem M, Pybus O, Gifford R. Discovery and analysis of the first endogenous lentivirus. Proc Nat Acad Sci. 2007;104(15):6261–6265. doi: 10.1073/pnas.0700471104. - DOI - PMC - PubMed
    1. Zhuo X, Rho M, Feschotte C. Genome-wide characterization of endogenous retroviruses in the bat Myotis lucifugus reveals recent and diverse infections. J Virol. 2013;87(15):8493–8501. doi: 10.1128/JVI.00892-13. - DOI - PMC - PubMed
    1. Bannert N, Kurth R. The evolutionary dynamics of human endogenous retroviral families. Annu Rev Genomics Hum Genet. 2006;7:149–173. doi: 10.1146/annurev.genom.7.080505.115700. - DOI - PubMed
    1. Belshaw R, Watson J, Katzourakis A, Howe A, Woolven-Allen J, Burt A, Tristem M. Rate of recombinational deletion among human endogenous retroviruses. J Virol. 2007;81(17):9437–9442. doi: 10.1128/JVI.02216-06. - DOI - PMC - PubMed
    1. Belshaw R, Pereira V, Katzourakis A, Talbot G, Pačes J, Burt A, Tristem M. Long-term reinfection of the human genome by endogenous retroviruses. Proc Nat Acad Sci USA. 2004;101(14):4894–4899. doi: 10.1073/pnas.0307800101. - DOI - PMC - PubMed

Publication types

LinkOut - more resources