Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Mar;83(5):1518-22.
doi: 10.1073/pnas.83.5.1518.

Dihydropyridine-sensitive Ca2+ channels in mammalian skeletal muscle cells in culture: electrophysiological properties and interactions with Ca2+ channel activator (Bay K8644) and inhibitor (PN 200-110)

Dihydropyridine-sensitive Ca2+ channels in mammalian skeletal muscle cells in culture: electrophysiological properties and interactions with Ca2+ channel activator (Bay K8644) and inhibitor (PN 200-110)

C Cognard et al. Proc Natl Acad Sci U S A. 1986 Mar.

Abstract

The whole-cell patch-clamp technique has been used to analyze the properties of the dihydropyridine-sensitive Ca2+ channel in rat skeletal muscle cells (myoballs) in culture. The potential dependence of Ca2+-channel activation is similar to that observed in cardiac cells. However, the skeletal muscle Ca2+ channel is activated more slowly (by a factor of about 10). The voltage dependence of Ca2+-channel inactivation indicates a half-maximal inactivation (Vh0.5) at -72 mV as compared to Vh0.5 = -35 mV for cardiac cells. Blockade of the skeletal muscle Ca2+ channel by the dihydropyridine (+)-PN 200-110 is voltage dependent, with a half-maximal effect (K0.5) of 13 nM for an application of the drug to the myoball membrane held at -90 mV and of 0.15 nM for an application at a potential of -65 mV. The 100-fold difference in apparent affinity is interpreted as a preferential association of PN 200-110 with the inactivated form of the Ca2+ channel. The K0.5 value found from electrophysiological experiments for the binding to the inactivated state (K0.5 = 0.15 nM) is nearly identical to the equilibrium dissociation constant found from binding experiments with (+)-[3H]PN 200-110 using transverse-tubular membranes (Kd = 0.22 nM). The dihydropyridine activator Bay K8644 acts by increasing Ca2+ current amplitude and by slowing down deactivation.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Dev Biol. 1981 Mar;82(2):258-66 - PubMed
    1. Circ Res. 1984 Sep;55(3):336-48 - PubMed
    1. Pflugers Arch. 1981 Aug;391(2):85-100 - PubMed
    1. J Pharmacol Exp Ther. 1982 Jul;222(1):80-6 - PubMed
    1. Nature. 1982 Jun 10;297(5866):498-501 - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources