Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jul;38(14):2354-8.

[Effect of Angelica sinensis polysaccharide on expression of telomere, telomerase and P53 in mice aging hematopoietic stem cells]

[Article in Chinese]
Affiliations
  • PMID: 24199571

[Effect of Angelica sinensis polysaccharide on expression of telomere, telomerase and P53 in mice aging hematopoietic stem cells]

[Article in Chinese]
Xian-Ping Zhang et al. Zhongguo Zhong Yao Za Zhi. 2013 Jul.

Abstract

Objective: To observe the effect of Angelica sinensis polysaccharides (ASP) on the length of telomere, the activity of telomerase and the expression of P53 protein in mice hematopoietic stem cells (HSCs), and explore ASP's potential mechanism for regulating HSC aging.

Method: C57BL/6J mice were randomly divided into the normal group, the aging group and the intervention group. The aging group was radiated with X ray to establish the mice aging HSC model. The intervention group was orally administered with ASP during X-ray irradiation, while the normal group was orally administered with NS. Their HSCs were isolated by immunomagnetic beads. Cell cycles analysis and senescence-associated beta-galactosidase (SA-beta-Gal) staining were used to detect changes in aging HSCs. The expression of P53 was determined by western blot analysis. The length of telomere and the vitality of telomerase were analyzed by southern blot and TRAP-PCR, respectively.

Result: Compared with the normal group, X-ray irradiation could significantly increase the cell ratio of in HSC G1 stage, rate of SA-beta-Gal positive cells and expression of P53 protein, and reduce the length of telomere and the vitality of telomerase. Compared with the aging group, ASP could significantly inhibit the cell ratio of in HSC G1 stage and the increase in the number of SA-beta-Gal positive cells, down-regulate the expression of P53 protein, and increase the length of telomere and the vitality of telomerase in HSCs.

Conclusion: ASP could antagonize X-ray-induced aging of HSCs, which may be related to the increase in the length of telomere and the activity of telomerase, as well as the down-regulation of the expression of P53 protein.

PubMed Disclaimer

MeSH terms