Lipid flip-flop in binary membranes composed of phosphatidylserine and phosphatidylcholine
- PMID: 24200035
- DOI: 10.1021/jp409672q
Lipid flip-flop in binary membranes composed of phosphatidylserine and phosphatidylcholine
Abstract
The kinetics and thermodynamics of lipid flip-flop in bilayers composed of 1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine (DPPS) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) were studied using sum-frequency vibrational spectroscopy. The kinetics of DSPC and DPPS flip-flop were examined as a function of temperature and bilayer composition. The rate of DSPC flip-flop did not exhibit any significant dependence on bilayer composition while the rate of DPPS flip-flop was inversely dependent on the mole fraction of DPPS. The transition-state thermodynamics for DSPC and DPPS lipids in these mixed bilayers were determined in order to identify the energetic impact of the phosphatidylserine headgroup on lipid flip-flop. The thermodynamics for the DSPC component remained statistically identical to bilayers composed entirely of DSPC. The activation energy for the DPPS component showed a linear correlation with the mole fraction of DPPS for all bilayer compositions. The enthalpy and entropy for DPPS flip-flop did not increase linearly with the fraction of DPPS but did directly correlate with the molecular area. The DPPS component also exhibited enthalpy-entropy compensation which suggests that lipid hydration may play a significant role in membrane dynamics.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
