Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Aug;179(1):51-60.
doi: 10.1007/BF00395770.

Perturbation of photosynthesis in spinach leaf discs by low concentrations of methyl viologen : Influence of increased thylakoid energisation on ATP synthesis, electron transport, energy dissipation, light-activation of the calvin-cycle enzymes, and control of starch and sucrose synthesis

Affiliations

Perturbation of photosynthesis in spinach leaf discs by low concentrations of methyl viologen : Influence of increased thylakoid energisation on ATP synthesis, electron transport, energy dissipation, light-activation of the calvin-cycle enzymes, and control of starch and sucrose synthesis

H Ekkehard et al. Planta. 1989 Aug.

Abstract

Spinach leaf discs were floated on methyl-viologen solutions (5-200 nmol·l(-1)) and the effect on photosynthetic metabolism was then investigated under conditions of saturating CO2. Methyl viologen led to increased non-photochemical quenching, and the ATP/ADP ratio increased from <2 to >10. Comparison of the apparent quantum yield and non-photochemical quenching indicated that these concentrations of methyl viologen were only catalysing a marginal electron flux, and that the decrease in quantum yield was mainly the result of ΔpH-triggered energy dissipation. Similar changes were also obtained after supplying tentoxin to inhibit the chloroplast ATP synthase and increase the energisation of the thylakoids. The photosystem-II acceptor, QA, was monitored by photochemical fluorescence quenching, and became more reduced. In contrast, the activation of NADP-malate dehydrogenase decreased, showing that the acceptor side of photosystem I becomes more oxidised. Similar changes were observed after supplying tentoxin. It is concluded that increased thylakoid energisation can lead to a substantial restriction of linear electron transport. Analysis of metabolite levels showed that glycerate-3-phosphate reduction was imporved, but that there was a large accumulation of triose phosphates and fructose-1,6-bisphosphate. This is the consequence of an inhibition of the regeneration of ribulose-1,5-bisphosphate, caused by inactivation of the stromal fructose-1,6-bisphosphatase and, to a lesser extent, phosphoribulokinase. Methyl viologen also led to inactivation of sucrose-phosphate synthase, and abolished the response of fructose-2,6-bisphosphate to rising rates of photosynthesis. This provides evidence for a primary role of glycerate-3-phosphate in controlling the activity of fructose-6-phosphate, 2-kinase and, thence, the fructose-2,6-bisphosphate concentration as the rate of photosynthesis increases. It is concluded that the very moderate ATP/ADP ratios found in chloroplasts are the results of constraints on the operation of ATP synthase. They can be increased if the thylakoid energisation is increased. However, the increased energisation acts directly or indirectly to disrupt many other aspects of photosynthetic metabolism including linear electron transport, activation of the Calvin cycle, and the control of sucrose and starch synthesis.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Planta. 1989 May;178(1):110-22 - PubMed
    1. Eur J Biochem. 1984 Aug 15;143(1):89-93 - PubMed
    1. Biochim Biophys Acta. 1980 Nov 5;593(1):85-102 - PubMed
    1. Biochim Biophys Acta. 1981 May 13;635(3):571-84 - PubMed
    1. Planta. 1988 May;174(2):217-30 - PubMed