Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Oct 24;8(10):e77889.
doi: 10.1371/journal.pone.0077889. eCollection 2013.

Microarray analysis of tomato's early and late wound response reveals new regulatory targets for Leucine aminopeptidase A

Affiliations

Microarray analysis of tomato's early and late wound response reveals new regulatory targets for Leucine aminopeptidase A

Melissa A Scranton et al. PLoS One. .

Abstract

Wounding due to mechanical injury or insect feeding causes a wide array of damage to plant cells including cell disruption, desiccation, metabolite oxidation, and disruption of primary metabolism. In response, plants regulate a variety of genes and metabolic pathways to cope with injury. Tomato (Solanum lycopersicum) is a model for wound signaling but few studies have examined the comprehensive gene expression profiles in response to injury. A cross-species microarray approach using the TIGR potato 10-K cDNA array was analyzed for large-scale temporal (early and late) and spatial (locally and systemically) responses to mechanical wounding in tomato leaves. These analyses demonstrated that tomato regulates many primary and secondary metabolic pathways and this regulation is dependent on both timing and location. To determine if LAP-A, a known modulator of wound signaling, influences gene expression beyond the core of late wound-response genes, changes in RNAs from healthy and wounded Leucine aminopeptidase A-silenced (LapA-SI) and wild-type (WT) leaves were examined. While most of the changes in gene expression after wounding in LapA-SI leaves were similar to WT, overall responses were delayed in the LapA-SI leaves. Moreover, two pathogenesis-related 1 (PR-1c and PR-1a2) and two dehydrin (TAS14 and Dhn3) genes were negatively regulated by LAP-A. Collectively, this study has shown that tomato wound responses are complex and that LAP-A's role in modulation of wound responses extends beyond the well described late-wound gene core.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Gene expression patterns in WT plants at 1 and 8 hr after wounding.
Genes that were differentially regulated in wounded (Local, Lo) and apical, non-wounded (Systemic, Sys) WT leaves at 1 and 8 hr after wounding were identified by analysis of the potato 10-K cDNA arrays (Materials and Methods). Differentially expressed genes (DEGs) were defined as those with p <0.05, |FC| ≥ 0.8.
Figure 2
Figure 2. Changes in phenylpropanoid synthesis and catabolism gene RNAs after wounding.
Many genes involved in phenylpropanoid metabolism were wound-regulated DEGs. For each biochemical step the number of genes regulated out of total number of clones representing those genes on the TIGR 10-K (version 3) potato cDNA microarray is indicated as a single or cluster of blocks. The colored blocks represent DEGs regulated at 1 hr (grey) and 8 hr (black) or both (checkered). Up-regulated DEGs are indicated by solid arrows and down-regulated DEGs are represented by dotted arrows. For some biochemical steps, enzymes were not represented on the array; no boxes appear at these steps. For complete pathway see Plant Metabolic Network (PMN; pmn.plantcyc.org). PAL, phenylalanine ammonia-lyase; C4H, cinnamic acid 4-hydroxylase; C4L, 4-coumarate-CoA ligase; CCR, cinnamoyl-CoA reductase; CHI, chalcone isomerase; LDOX, Leucoanthocyanidin dioxygenase; CHS, Chalcone synthase; MAT, Malonyltransferase; ASA, Anthranilate synthase alpha; SK, Shikimate kinase; CS, Chorismate synthase; GltS, Glutamate synthase; THT, Tyramine N-hydroxycinnamoyl transferase; C3H, P-coumaroyl shikimate 3'-hydroxylase; CMT, Caffeoyl-CoA O-methyltransferase.
Figure 3
Figure 3. Changes in polyamine, SAM, and ethylene synthesis and catabolism gene RNAs after wounding.
Many genes involved in polyamine, SAM, and ethylene metabolism were wound-induced DEGs in tomato. DEG expression patterns are represented as described in Figure 2. SAM, S-adenosylmethionine synthetase; SAMDC, S-adenosylmethionine decarboxylase; SPDS, Spermidine synthase; ADC, Arginine decarboxylase; AIH, Agmatine iminohydrolase; ODC, Ornithine decarboxylase; NAD, N-acetylornithine deacetylase; GABA-T, GABA Transaminase.
Figure 4
Figure 4. Relative RNA fold change in WT vs.
LapA-SI lines 1 and 8h after wounding. Correlation of relative RNA fold change (FC) between WT and LapA-SI lines after wounding. RNAs accumulated to similar levels in WT and LapA-SI leaves are indicated by closed diamonds. The genes differentially regulated between in LapA-SI and WT leaves are indicated by open circles (genotype DEGS (gDEGs); p<0.05, |FC| ≥0.8]). LapA RNAs are indicated by open triangles.
Figure 5
Figure 5. Genes differentially regulated in LapA-SI before wounding (putative 0-hr gDEGs).
Genes with RNAs at similar levels in LapA-SI and WT leaves before wounding (0 hr) are indicated with closed diamonds (log2 fold change (FC) <1.5). Putative 0-hr gDEGs are indicated with open circles (p<0.05, |FC| ≥0.8). LapA RNAs are indicated by open triangles.
Figure 6
Figure 6. Quantitative RT-PCR analysis of selected mRNAs in leaves after wounding.
Relative expression of LEA (TAS14, Dhn3, Dhn2, ER5) and PR (PR-1a2, PR-1c) transcripts were determined 0, 1, 8, and 24 hr after wounding in WT (white), LapA-SI (grey) and LapA-OX (black) leaves (n=3). Significant differences between transcript accumulation was determined [ANOVA, Tukey post-hoc test (p<0.05)].

Similar articles

Cited by

References

    1. Bostock RM (2005) Signal crosstalk and induced resistance: Straddling the line between cost and benefit. Annu Rev Phytopathol 43: 545-580. doi:10.1146/annurev.phyto.41.052002.095505. PubMed: 16078895. - DOI - PubMed
    1. Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul, 19: 195-216. PubMed: 11038228. - PubMed
    1. Heil M (2009) Damaged-self recognition in plant herbivore defence. Trends Plant Sci 14: 356-363. doi:10.1016/j.tplants.2009.04.002. PubMed: 19540148. - DOI - PubMed
    1. Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59: 41-66. doi:10.1146/annurev.arplant.59.032607.092825. PubMed: 18031220. - DOI - PubMed
    1. Walling LL (2009) Adaptive defense responses to pathogens and insects. Adv Bot Res 51: 551-612. doi:10.1016/S0065-2296(09)51013-0. - DOI

Publication types

MeSH terms