Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jan:95:556-65.
doi: 10.1016/j.chemosphere.2013.09.115. Epub 2013 Nov 5.

Sediment baseline study of levels and sources of polycyclic aromatic hydrocarbons and heavy metals in Lake Nicaragua

Affiliations

Sediment baseline study of levels and sources of polycyclic aromatic hydrocarbons and heavy metals in Lake Nicaragua

Katrine Scheibye et al. Chemosphere. 2014 Jan.

Abstract

Selected metals and polycyclic aromatic hydrocarbons (PAHs) were analyzed in sediment samples from 24 sites in Lake Nicaragua sampled May 2010 to provide a baseline of pollution levels. Cu exceeded the Consensus-Based Sediment Quality Guideline (CBSQG) Threshold Effect Concentrations (TECs) at 21 sites while Ni exceeded the value at one site. Comparison of the sampling sites showed that the south-eastern shore and a central part of the lake contained the highest levels of As, Cd, Cr, and Ni, while the western part of the lake contained the highest levels of Cu, Pb, and Zn. Analysis of PAH levels showed that the CBSQG TECs were exceeded by naphthalene at five sites. The sum concentrations of the 16 US EPA priority PAHs (∑PAH16) ranged from 0.01 mg kg(-1) dw to 0.64 mg kg(-1) dw. The highest ∑PAH16 concentration was found upstream in River Mayales and the PAH composition revealed a heavy PAH fraction (e.g., creosote). The main sources of PAHs in Lake Nicaragua were determined as of diffuse petrogenic and pyrogenic origin as well as diagenetic produced perylene. The relative importance of these PAH sources was determined by interpretation of loading and score plots from a principal component analysis. This study concluded that areas of Lake Nicaragua represent an important pollution baseline for future studies in this lake and other tropical lakes.

Keywords: Contaminants; Lake Nicaragua; Principal component analysis; Sediment; Source identification.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources