Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Apr;35(4 Suppl 1):60-5.
doi: 10.1016/0026-0495(86)90189-7.

A sodium-pump defect in diabetic peripheral nerve corrected by sorbinil administration: relationship to myo-inositol metabolism and nerve conduction slowing

A sodium-pump defect in diabetic peripheral nerve corrected by sorbinil administration: relationship to myo-inositol metabolism and nerve conduction slowing

D A Greene. Metabolism. 1986 Apr.

Abstract

Nerve conduction slowing, a hallmark of both experimental and human diabetic neuropathy, is improved or corrected by aldose reductase inhibitors such as sorbinil. Recent animal experiments attribute acutely reversible nerve conduction slowing in diabetes to a myo-inositol (MI)-related defect in the nerve Na-K-ATPase (which generates the transmembrane sodium and potassium potentials necessary for nerve impulse conduction and the sodium gradient necessary for sodium-dependent uptake of substrates). This MI-related abnormality in Na-K-ATPase function is currently viewed as a cyclic, metabolic defect involving sequential alteration of Na-dependent MI uptake, MI content, MI incorporation into membrane phospholipids, and phospholipid-dependent Na-K-ATPase function in peripheral nerve. Aldose reductase inhibitors have been shown to normalize both nerve MI content and nerve Na-K-ATPase activity. These observations suggest that the acute effects of aldose reductase inhibitors on nerve conduction in both diabetic animals and patients may be mediated by correction of an underlying MI-related nerve Na-K-ATPase defect. Furthermore, this sorbinil-corrected Na-K-ATPase defect in diabetic nerve may contribute to other biochemical, functional, and structural abnormalities present in patients with diabetic peripheral neuropathy.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources