Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014:104:115-35.
doi: 10.1007/978-3-0348-0726-5_9.

On the role of co-inhibitory molecules in dendritic cell: T helper cell coculture assays aimed to detect chemical-induced contact allergy

Affiliations
Review

On the role of co-inhibitory molecules in dendritic cell: T helper cell coculture assays aimed to detect chemical-induced contact allergy

Matthias Peiser et al. Exp Suppl. 2014.

Abstract

T cells play a pivotal role in sensitization and elicitation of type IV allergic reactions. While T helper cells sustain and maintain the differentiation of further effector cells, regulatory T cells are involved in control of cytokine release and proliferation, and T killer cells execute cellular lysis, thereby leading to certain levels of tissue damage. According to their central role, the widely applied and OECD-supported test method for the assessment of the sensitization potential of a chemical, i.e., the local lymph node assay (LLNA), relies on the detection of the immune-responsive proliferation of lymphocytes. However, most sensitization assays recently developed take advantage of the initiators of sensitization, dendritic cells (DCs) or DC-like cell lines. Here, we focus on inhibitory molecules expressed on the surface of DCs and their corresponding receptors on T cells. We summarize insight into the function of CTLA-4, the ligands of inducible co-stimulators (ICOSs), and on the inhibitory receptor programmed death (PD). The targeting of immune cell surface receptors by inhibitory molecules holds some promise with regard to the development of T cell-based sensitization assays. Firstly, a broader and more sensitive dynamic range of detection could be achieved by blocking inhibitors or by removing inhibiting regulatory T cells from the assays. Secondly, the actual expression levels of inhibitory molecules could be also a valuable indicator for the process of sensitization. Finally, inhibitory molecules in coculture test systems are supposed to have a major influence on DCs by reverse signaling, thereby affecting their differentiation and maturation status in a feedback loop. In conclusion, inhibitory ligands of DC surface receptors and/or their cognate receptors on T cells could serve as useful tools in cell-based assays, directly influencing toxicological endpoints such as sensitization.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources