Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Mar;67(3):231-6.
doi: 10.1038/ja.2013.116. Epub 2013 Nov 13.

Isolation, structural elucidation and biosynthesis of 3-hydroxy-6-dimethylallylindolin-2-one, a novel prenylated indole derivative from Actinoplanes missouriensis

Affiliations

Isolation, structural elucidation and biosynthesis of 3-hydroxy-6-dimethylallylindolin-2-one, a novel prenylated indole derivative from Actinoplanes missouriensis

Ryutaro Satou et al. J Antibiot (Tokyo). 2014 Mar.

Abstract

Many prenylated indole derivatives are widely distributed in nature. Recently, two Streptomyces prenyltransferases, IptA and its homolog SCO7467, were identified in the biosynthetic pathways for 6-dimethylallylindole (DMAI)-3-carbaldehyde and 5-DMAI-3-acetonitrile, respectively. Here, we isolated a novel prenylated indole derivative, 3-hydroxy-6-dimethylallylindolin (DMAIN)-2-one, based on systematic purification of metabolites from a rare actinomycete, Actinoplanes missouriensis NBRC 102363. The structure of 3-hydroxy-6-DMAIN-2-one was determined by HR-MS and NMR analyses. We found that A. missouriensis produced not only 3-hydroxy-6-DMAIN-2-one but also 6-dimethylallyltryptophan (DMAT) and 6-DMAI when grown in PYM (peptone-yeast extract-MgSO4) medium. We searched the complete genome of A. missouriensis for biosynthesis genes of these compounds and found a gene cluster composed of an iptA homolog (AMIS_22580, named iptA-Am) and a putative tryptophanase gene (AMIS_22590, named tnaA-Am). We constructed a tnaA-Am-deleted (ΔtnaA-Am) strain and found that it produced 6-DMAT but did not produce 6-DMAI or 3-hydroxy-6-DMAIN-2-one. Exogenous addition of 6-DMAI to mutant ΔtnaA-Am resulted in the production of 3-hydroxy-6-DMAIN-2-one. Furthermore, in vitro enzyme assays using recombinant proteins produced by Escherichia coli demonstrated that 6-DMAI was synthesized from tryptophan and dimethylallyl pyrophosphate in the presence of both IptA-Am and TnaA-Am, and that IptA-Am preferred tryptophan to indole as the substrate. From these results, we concluded that the iptA-Am-tnaA-Am gene cluster is responsible for the biosynthesis of 3-hydroxy-6-DMAIN-2-one. Presumably, tryptophan is converted into 6-DMAT by IptA-Am and 6-DMAT is then converted into 6-DMAI by TnaA-Am. 6-DMAI appears to be converted into 3-hydroxy-6-DMAIN-2-one by the function of some unknown oxidases in A. missouriensis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources