Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Nov;62(11):898-901.
doi: 10.1007/s00101-013-2246-y. Epub 2013 Nov 14.

[Precipitation of piritramide and cefazolin. Study of the dependence on concentration and pH]

[Article in German]
Affiliations

[Precipitation of piritramide and cefazolin. Study of the dependence on concentration and pH]

[Article in German]
V-S Eckle et al. Anaesthesist. 2013 Nov.

Abstract

Background: Drug incompatibility might lead to precipitation with subsequent serious complications, such as transient pulmonary embolism. Recently, incompatibility of the opioid piritramide with cephalosporin antibiotics was described. As both drugs are frequently administered in a perioperative setting, the present study addressed the question whether the precipitation effect depends on the piritramide concentration or on the pH of the solution. Moreover, it was tested whether the precipitate reversibly dissolves in a physiological saline solution.

Methods: Piritramide was diluted to the final test concentrations in 0.9 % sodium chloride solution. Precipitation tests were performed by combining 1 ml of the respective piritramide dilution with 1 ml of cefazolin (20 mg/ml) in a syringe. Precipitation was detected by visual inspection as an opaque whitish appearance of the mixture. Each concentration was tested 5 times. The pH values of the tested piritramide concentrations were determined using a 3-point calibrated pH meter. The precipitate formed in 1 ml of cefazolin (20 mg/ml) and 1 ml of piritramide (5 mg/ml) was diluted in 3 ml physiological saline.

Results: The piritramide concentrations 5 mg/ml, 3.75 mg/ml and 3 mg/ml precipitated in the presence of cefazolin (20 mg/ml), while the concentrations 1.875 mg/ml, 1 mg/ml and 0.5 mg/ml did not produce a precipitate. To exclude the possibility that changes in pH of the tested dilutions might be responsible for these findings, the pH values of the piritramide dilutions were measured. The mean pH values of the concentrations 5 mg/ml, 3.75 mg/ml, 3 mg/ml, 1.875 mg/ml and 1 mg/ml did not differ significantly (pH 3.89 ± 0.004, n = 26, tested by ANOVA). However, the mean pH of 0.5 mg/ml was significantly different from the other tested dilutions (pH 3.98 ± 0.02, n = 6; p < 0.01 by ANOVA). After diluting the precipitate of piritramide and cefazolin in physiological saline the whitish precipitate completely dissolved and the resulting solution became clear (n = 5).

Conclusion: The results imply a concentration dependence of the precipitation with cefazolin, while a correlation with pH changes could not be detected. In cases of co-administration of cephalosporins and piritramide, a piritramide concentration of 1 mg/ml seems to be safe and does not form a precipitate. As the precipitate could be reversed by diluting in saline solution it is most likely that a proton switch between the carboxylic acid moiety of cefazolin and the amino group of piritramide causes the precipitation.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Ann Pharmacother. 2013 Mar;47(3):426-7 - PubMed
    1. Arch Gynecol Obstet. 2012 Oct;286(4):859-65 - PubMed
    1. JRSM Short Rep. 2011 Jul;2(7):58 - PubMed
    1. Anesth Analg. 2002 Sep;95(3):785 - PubMed
    1. Bratisl Lek Listy. 2010;111(11):616-8 - PubMed

Publication types

LinkOut - more resources