Photoinhibition of photosynthesis in intact kiwifruit (Actinidia deliciosa) leaves: Effect of temperature
- PMID: 24221470
- DOI: 10.1007/BF00394766
Photoinhibition of photosynthesis in intact kiwifruit (Actinidia deliciosa) leaves: Effect of temperature
Abstract
Photoinhibition of photosynthesis was induced in attached leaves of kiwifruit grown in natural light not exceeding a photon flux density (PFD) of 300 μmol·m(-2)·s(-1), by exposing them to a PFD of 1500 μmol·m(-2)·s(-1). The temperature was held constant, between 5 and 35° C, during the exposure to high light. The kinetics of photoinhibition were measured by chlorophyll fluorescence at 77K and the photon yield of photosynthetic O2 evolution. Photoinhibition occurred at all temperatures but was greatest at low temperatures. Photoinhibition followed pseudo first-order kinetics, as determined by the variable fluorescence (F v) and photon yield, with the long-term steady-state of photoinhibition strongly dependent on temperature wheareas the observed rate constant was only weakly temperature-dependent. Temperature had little effect on the decrease in the maximum fluorescence (F m) but the increase in the instantaneous fluorescence (F o) was significantly affected by low temperatures in particular. These changes in fluorescence indicate that kiwifruit leaves have some capacity to dissipate excessive excitation energy by increasing the rate constant for non-radiative (thermal) energy dissipation although temperature apparently had little effect on this. Direct photoinhibitory damage to the photosystem II reaction centres was evident by the increases in F o and extreme, irreversible damage occurred at the lower temperatures. This indicates that kiwifruit leaves were most susceptible to photoinhibition at low temperatures because direct damage to the reaction centres was greatest at these temperatures. The results also imply that mechanisms to dissipate excess energy were inadequate to afford any protection from photoinhibition over a wide temperature range in these shade-grown leaves.
Similar articles
-
Photoinhibition of photosynthesis in intact kiwifruit (Actinidia deliciosa) leaves: Recovery and its dependence on temperature.Planta. 1988 May;174(2):159-65. doi: 10.1007/BF00394767. Planta. 1988. PMID: 24221471
-
Photoinhibition of photosynthesis in intact kiwifruit (Actinidia deliciosa) leaves: Effect of light during growth on photoinhibition and recovery.Planta. 1988 Sep;175(3):355-63. doi: 10.1007/BF00396341. Planta. 1988. PMID: 24221873
-
Photoinhibition of photosynthesis in intact kiwifruit (Actinidia deliciosa) leaves: Changes in susceptibility to photoinhibition and recovery during the growth season.Planta. 1992 Feb;186(3):418-25. doi: 10.1007/BF00195323. Planta. 1992. PMID: 24186739
-
Photoinhibition of photosynthesis in intact kiwifruit (Actinidia deliciosa) leaves: effect of growth temperature on photoinhibition and recovery.Planta. 1989 Dec;180(1):32-9. doi: 10.1007/BF02411407. Planta. 1989. PMID: 24201841
-
Photosynthesis and temperature, with particular reference to effects on quantum yield.Symp Soc Exp Biol. 1988;42:347-75. Symp Soc Exp Biol. 1988. PMID: 3077864 Review.
Cited by
-
Photoinhibition of photosynthesis in intact kiwifruit (Actinidia deliciosa) leaves: Recovery and its dependence on temperature.Planta. 1988 May;174(2):159-65. doi: 10.1007/BF00394767. Planta. 1988. PMID: 24221471
-
Melatonin Improves Heat Tolerance in Kiwifruit Seedlings through Promoting Antioxidant Enzymatic Activity and Glutathione S-Transferase Transcription.Molecules. 2018 Mar 6;23(3):584. doi: 10.3390/molecules23030584. Molecules. 2018. PMID: 29509672 Free PMC article.
-
Photoinhibition of photosynthesis in intact kiwifruit (Actinidia deliciosa) leaves: Effect of light during growth on photoinhibition and recovery.Planta. 1988 Sep;175(3):355-63. doi: 10.1007/BF00396341. Planta. 1988. PMID: 24221873
-
Photoinhibition of photosynthesis in intact kiwifruit (Actinidia deliciosa) leaves: Changes in susceptibility to photoinhibition and recovery during the growth season.Planta. 1992 Feb;186(3):418-25. doi: 10.1007/BF00195323. Planta. 1992. PMID: 24186739
-
Action of UV and visible radiation on chlorophyll fluorescence from dark-adapted grape leaves (Vitis vinifera L.).Photosynth Res. 2003;75(1):29-39. doi: 10.1023/A:1022486925516. Photosynth Res. 2003. PMID: 16245091