Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 May;102(5):1917-30.
doi: 10.1083/jcb.102.5.1917.

Site-restricted expression of cytotactin during development of the chicken embryo

Site-restricted expression of cytotactin during development of the chicken embryo

K L Crossin et al. J Cell Biol. 1986 May.

Abstract

The sequential appearance of the extracellular matrix (ECM) protein, cytotactin, was examined during development of the chicken embryo by immunohistochemical techniques. Although cytotactin was identified as a molecule that mediates glia-neuron interactions, preliminary immunohistochemical localization of the molecule suggested that it was an ECM protein with a widespread but nonetheless more restricted distribution than either fibronectin or laminin. In the present study, it was found that cytotactin is first present in the gastrulating chicken embryo. It appears later in the basement membrane of the developing neural tube and notochord in a temporal sequence beginning in the cephalic regions and proceeding caudally. Between 2 and 3 d of development, the molecule is present at high levels in the early neural crest pathways (surrounding the neural tube and somites) but, in contrast to fibronectin and laminin, is not found in the lateral plate mesoderm or ectoderm. At later times, cytotactin is expressed extensively in the central nervous system, in lesser amounts in the peripheral nervous system, and in a number of nonneural sites, most prominently in all smooth muscles and in basement membranes of lung and kidney. Cytotactin appears in adult tissues with distributions that are similar to those seen in embryonic tissues. The findings raise the possibility that certain ECM proteins contribute to pattern formation in embryogenesis as a result of their restricted expression in a spatiotemporally regulated fashion at some sites but not at others.

PubMed Disclaimer

References

    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8075-9 - PubMed
    1. Science. 1976 Apr 16;192(4236):218-26 - PubMed
    1. J Biol Chem. 1977 Oct 10;252(19):6835-40 - PubMed
    1. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350-4 - PubMed

Publication types