Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985;35(6):985-1012.
doi: 10.2170/jjphysiol.35.985.

Influences of pressure-injected cyclic AMP on the membrane current and characteristics of an identified neuron of Aplysia kurodai

Influences of pressure-injected cyclic AMP on the membrane current and characteristics of an identified neuron of Aplysia kurodai

N Hara et al. Jpn J Physiol. 1985.

Abstract

The ionic mechanism of the effect of intracellularly injected adenosine 3',5'-cyclic monophosphate (cAMP) on the membrane of identified neuron L5 of Aplysia kurodai was investigated with conventional voltage-clamp and ion-substitution techniques. The intracellular elevation of cAMP caused an inward current (IcAMP), which was not accompanied by a significant change in membrane conductance at potentials more hyperpolarized than -60 mV. The current increased over the voltage range (-50 to -30 mV) associated with a conductance decrease and decreased at potentials more hyperpolarized than -60 mV. Elevated intracellular cAMP was found to enhance a region of negative slope resistance in steady-state I-V relations. Duration of the IcAMP was greatly prolonged by bath-applied isobutylmethylxanthine (50 microM), but imidazole (10 mM) had an opposite effect on the IcAMP. Tolbutamide (5 mM), a protein kinase inhibitor, reduced the IcAMP. The current was not affected by the presence of bath-applied TTX (50 microM), ouabain (50 microM), or triaminopyrimidine (5 mM). Reduction of [Na+]0 reversibly decreased the IcAMP. Li+ could largely substitute for Na+. Alterations of [K+]0, and bath application of 4-AP (5 mM) and TEA (30 mM) did not affect the IcAMP. In the presence of Na+, Cl-, and divalent cations such as Ca2+ and Ba2+ inhibited the IcAMP. These results suggest that fast elevation of intracellular cAMP induces a TTX-resistant slow Na+ inward current, and the current might be due to activation of cAMP-dependent protein kinase.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources