Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Feb;17(2):409-26.
doi: 10.1016/0306-4522(86)90256-3.

Destruction of meningeal cells over the newborn hamster cerebellum with 6-hydroxydopamine prevents foliation and lamination in the rostral cerebellum

Destruction of meningeal cells over the newborn hamster cerebellum with 6-hydroxydopamine prevents foliation and lamination in the rostral cerebellum

C von Knebel Doeberitz et al. Neuroscience. 1986 Feb.

Abstract

Intracisternal injection of 30 micrograms 6-hydroxydopamine was used to destroy meningeal cells in the newborn hamster. After 20 or 30 days the cerebella of treated animals showed severe morphological alterations including: an absence of distinct folia anterior to the primary fissure; a disruption of lamination in the same region by the displacement of both Purkinje cells and cerebellar interneurons; a reduction in size and frequency of branching of the medullary tree with anomalous anterobasal branches and splaying; reductions in the area of the molecular layer, the total area occupied by granule cells, the length of the pial surface and the length of the Purkinje cell layer of 29, 21, 57 and 27%, respectively; disorganization of the radially organized glial scaffold by outgrowth of Bergmann glial fibers and displacement of their cell bodies, the Golgi epithelial cells, and anomalous orientation, polarity, size and branching frequency of Purkinje cell dendritic trees. These findings support our earlier hypothesis that the initial destruction of meningeal cells destabilizes the cerebellar surface (basal lamina and glia limitans superficialis) and disorganizes the glial scaffold, while the neuronal cerebellar malformations are secondary to this glial defect.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources