Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Oct;21(4):327-35.
doi: 10.1016/j.jsps.2012.10.003.

Polymers influencing transportability profile of drug

Affiliations
Review

Polymers influencing transportability profile of drug

Vinod L Gaikwad et al. Saudi Pharm J. 2013 Oct.

Abstract

Drug release from various polymers is generally governed by the type of polymer/s incorporated in the formulation and mechanism of drug release from polymer/s. A single polymer may show one or more mechanisms of drug release out of which one mechanism is majorly followed for drug release. Some of the common mechanisms of drug release from polymers were, diffusion, swelling, matrix release, leaching of drug, etc. Mechanism or rate of drug release from a polymer or a combination of polymers can be predicted by using different computational methods or models. These models were capable of predicting drug release from its dosage form in advance without actual formulation and testing of drug release from dosage form. Quantitative structure-property relationship (QSPR) is an important tool used in the prediction of various physicochemical properties of actives as well as inactives. Since last several decades QSPR has been applied in new drug development for reducing the total number of drugs to be synthesized, as it involves a selection of the most desirable compound of interest. This technique was also applied in predicting in vivo performance of drug/s for various parameters. QSPR serves as a predictive tool to correlate structural descriptors of molecules with biological as well as physicochemical properties. Several researchers have contributed at different extents in this area to modify various properties of pharmaceuticals. The present review is focused on a study of different polymers that influence the transportability profiles of drugs along with the application of QSPR either to study different properties of polymers that regulate drug release or in predicting drug transportability from different polymer systems used in formulations.

Keywords: Drug; Polymer; Predictability; Transportability.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Alakhov V., Moskaleva E.Y., Batrakova E.V., Kabanov A.V. Hypersensitization of multidrug resistant human ovarian carcinoma cells by pluronic P85 block copolymer. Bioconjug. Chem. 1996;7:209–216. - PubMed
    1. Alakhov V., Klinksi E., Li S., Pietrzynski G., Venne A., Batrakova E., Bronitch T., Kabanov A.V. Block copolymer based formulation of doxorubicin. from cell screen to clinical trials. Colloids. Surf. B. Biointerfaces. 1999;16:113–134.
    1. Asperen J., Tellingen O., Sparreboom A., Schinkel A.H., Borst P., Nooijen W.J., Beijnen J.H. Enhanced oral bioavailability of paclitaxel in mice treated with the P-glycoprotein blocker SDZ PSC 833. Br. J. Cancer. 1997;76:1181–1183. - PMC - PubMed
    1. Banerjee S.K., Jagannath C., Hunter R.L., Dasgupta A. Bioavailability of tobramycin after oral delivery in FVB mice using CRL-1605 copolymer, an inhibitor of P-glycoprotein. Life Sci. 2000;67:2011–2016. - PubMed
    1. Bardelmeijer H.A., Beijnen J.H., Brouwer K.R., Rosing H., Nooijen W.J., Schellens J.H., van Tellingen O. Increased oral bioavailability of paclitaxel by GF120918 in mice through selective modulation of P-glycoprotein. Clin. Cancer Res. 2000;6:4416–4421. - PubMed

LinkOut - more resources