Characterization of glycoproteins of viruses causing hemorrhagic fever with renal syndrome (HFRS) using monoclonal antibodies
- PMID: 2422813
- DOI: 10.1016/0042-6822(86)90058-9
Characterization of glycoproteins of viruses causing hemorrhagic fever with renal syndrome (HFRS) using monoclonal antibodies
Abstract
Viruses causing hemorrhagic fever with renal syndrome (HFRS) encode two glycoproteins, G1 and G2. For determination of the biological functions of these glycoproteins, we isolated 15 hybridomas secreting monoclonal antibodies directed against the glycoproteins of the B-1 and Hantaan viruses (HV). From results of neutralizing and hemagglutination inhibition (HI) tests, and studies on the antigenic reactivities of the antibodies with other HV-related viruses by immunofluorescence, we classified these hybridoma clones into two groups producing antibodies to the G1 proteins of the B-1 virus, six groups producing antibodies to G2 proteins of the B-1 virus, and four groups producing antibodies to the G2 protein of HV. Of the antibodies to G2 produced by 12 clones, groups A and B had high HI activity with HV-related virus cross-reactivity and moderate neutralizing activity, group C had moderate HI activity with virus specificity but low neutralizing activity, group G had high neutralizing activity and low HI activity, and five other groups had little or no HI or neutralizing activity. Group A reacting with G1 protein had low level of both neutralizing and HI activity, while group B had no HI activity. One clone of monoclonal antibody had high neutralizing activity and no HI activity, but it did not react with either polypeptide by immunoprecipitation followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis or by the immunoblotting method. These data suggest that both glycoproteins are the targets of neutralizing antibodies. Furthermore, the results indicate that the antigenic determinants with hemagglutination activity are mainly on the G2 protein, and that the domains related to neutralizing activity and to HI activity are separate.
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources