Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1986:9:87-119.
doi: 10.1146/annurev.ne.09.030186.000511.

Cyclic GMP cascade of vision

Review

Cyclic GMP cascade of vision

L Stryer. Annu Rev Neurosci. 1986.

Abstract

Cyclic GMP is central to visual excitation in vertebrate retinal rod cells. Sodium channels in the plasma membrane of the outer segment are kept open in the dark by a high level of cGMP. Light closes these channels by activating an enzymatic cascade that leads to the rapid hydrolysis of cGMP. Photoexcited rhodopsin triggers transducin by catalyzing the exchange of GTP for bound GDP. The activated GTP-form of transducin then switches on the phosphodiesterase by overcoming an inhibitory constraint. The overall gain of this cascade is about 10(5). The cascade is turned off by the GTPase activity of transducin and by the action of rhodopsin kinase and arrestin. One of the challenges now is to delineate the interplay of cGMP, calcium ion, and phosphoinositides in excitation and adaptation. Transducin belongs to a family of signal-coupling proteins that includes the G proteins of the hormone-regulated adenylate cyclase cascade. The initial events in visual excitation in molluscs and arthropods are probably similar to those of vertebrates. The triggering of transducin by photoexcited rhodopsin is a recurring motif in visual transduction. The coming together of electrophysiology, biochemistry, and molecular genetics affords new opportunities in unraveling the molecular mechanism of visual transduction.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources