Chromoplasts of Palisota barteri, and the molecular structure of chromoplast tubules
- PMID: 24232018
- DOI: 10.1007/BF00402960
Chromoplasts of Palisota barteri, and the molecular structure of chromoplast tubules
Abstract
Ripe, deep-red fruits of Palisota barteri contain tubulous chromoplasts which develop from unpigmented leucoplasts. These plastids contain, besides large spherical inclusion bodies, numerous osmiophilic globules which, in the course of ripening, frequently show transition states to tubular structures. The tubules contain, in all stages of their development, acylated β-citraurin, which is also the main pigment of Citrus fruits. The tubular structures have been isolated, fragmented by French-pressure treatment, and separated into three fractions on sucrose gradients. The lightest fraction (1.044 g·cm(-3)) contained thick fragments ('saccules') with diameters of 50-60 nm, whereas the heaviest (1.083 g·cm(-3)) consisted of tubules 20-25 nm in diameter. The relative amounts of polar lipids, proteins, and carotenoids of the different fractions are consistent with a molecular structure model of tubules and saccules, according to which a wick of longitudinally oriented carotenoid molecules of variable thickness is coated by a monolayer of polar lipids and proteins. High-resolution 'negative-stainings' showed the surface of the tubules to be covered with globular particles of about 6 nm diameter. The main protein of all fractions is a 30-kDa polypeptide; it is assumed that the particles are oligomers of this specific protein.
Similar articles
-
Chromoplasts of Tropaeolum majus L.: Structure and development.Planta. 1976 Jan;128(1):15-22. doi: 10.1007/BF00397173. Planta. 1976. PMID: 24430601
-
Chromoplasts of Tropaeolum majus L.: Isolation and characterization of lipoprotein elements.Planta. 1976 Jan;128(1):23-8. doi: 10.1007/BF00397174. Planta. 1976. PMID: 24430602
-
Plastid structure and carotenogenic gene expression in red- and white-fleshed loquat (Eriobotrya japonica) fruits.J Exp Bot. 2012 Jan;63(1):341-54. doi: 10.1093/jxb/err284. Epub 2011 Oct 11. J Exp Bot. 2012. PMID: 21994170 Free PMC article.
-
Chromoplast biogenesis and carotenoid accumulation.Arch Biochem Biophys. 2013 Nov 15;539(2):102-9. doi: 10.1016/j.abb.2013.07.002. Epub 2013 Jul 12. Arch Biochem Biophys. 2013. PMID: 23851381 Review.
-
Chromoplasts--the last stages in plastid development.Int J Dev Biol. 1991 Sep;35(3):251-8. Int J Dev Biol. 1991. PMID: 1814407 Review.
Cited by
-
A mechanism implicating plastoglobules in thylakoid disassembly during senescence and nitrogen starvation.Planta. 2013 Feb;237(2):463-70. doi: 10.1007/s00425-012-1813-9. Epub 2012 Nov 28. Planta. 2013. PMID: 23187680 Review.
-
Differential gene expression and characterization of tissue-specific cDNA clones in oil palm using mRNA differential display.Mol Biol Rep. 2005 Dec;32(4):227-35. doi: 10.1007/s11033-005-3142-6. Mol Biol Rep. 2005. PMID: 16328884
-
A Comprehensive Analysis of Chromoplast Differentiation Reveals Complex Protein Changes Associated with Plastoglobule Biogenesis and Remodeling of Protein Systems in Sweet Orange Flesh.Plant Physiol. 2015 Aug;168(4):1648-65. doi: 10.1104/pp.15.00645. Epub 2015 Jun 8. Plant Physiol. 2015. PMID: 26056088 Free PMC article.
-
Unique chromoplast organisation and carotenoid gene expression in carotenoid-rich carrot callus.Planta. 2018 Dec;248(6):1455-1471. doi: 10.1007/s00425-018-2988-5. Epub 2018 Aug 21. Planta. 2018. PMID: 30132151 Free PMC article.
-
A new look at sporoderm ontogeny in Persea americana and the hidden side of development.Ann Bot. 2010 Jun;105(6):939-55. doi: 10.1093/aob/mcq075. Epub 2010 Apr 17. Ann Bot. 2010. PMID: 20400758 Free PMC article.