Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Feb;19(1):60-9.
doi: 10.1016/j.siny.2013.09.005. Epub 2013 Nov 13.

Application of neurally adjusted ventilatory assist in neonates

Affiliations
Review

Application of neurally adjusted ventilatory assist in neonates

Howard Stein et al. Semin Fetal Neonatal Med. 2014 Feb.

Abstract

Neurally adjusted ventilatory assist (NAVA) uses the electrical activity of the diaphragm (Edi) as a neural trigger to synchronize mechanical ventilatory breaths with the patient's neural respiratory drive. Using this signal enables the ventilator to proportionally support the patient's instantaneous drive on a breath-by-breath basis. Synchrony can be achieved even in the presence of significant air leaks, which make this an attractive choice for invasive and non-invasive ventilation of the neonate. This paper describes the Edi signal, neuroventilatory coupling, and patient-ventilator synchrony including the functional concept of NAVA. Safety features, NAVA terminology, and clinical application of NAVA to unload respiratory musculature are presented. The use of the Edi signal as a respiratory vital sign for conventional ventilation is discussed. The results of animal and adult studies are briefly summarized and detailed descriptions of all NAVA-related research in pediatric and neonatal patients are provided. Further studies are needed to determine whether NAVA will have significant impact on the overall outcomes of neonates.

Keywords: Diaphragm; Electrical activity; Neural trigger; Neurally adjusted ventilatory assist; Neuroventilatory cascade; Patient–ventilator interaction; Synchrony.

PubMed Disclaimer

LinkOut - more resources