Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Mar;167(3):369-75.
doi: 10.1007/BF00391341.

The relationship between phosphate status and photosynthesis in leaves : Effects on intracellular orthophosphate distribution, photosynthesis and assimilate partitioning

Affiliations

The relationship between phosphate status and photosynthesis in leaves : Effects on intracellular orthophosphate distribution, photosynthesis and assimilate partitioning

C Foyer et al. Planta. 1986 Mar.

Abstract

Photosynthesis, assimilate partitioning and intracellular distribution of orthophosphate (Pi) in barly (Hordeum vulgare L.) leaves were measured in plants grown with either 25, 1 or 0 mmol· 1(-1) nutrient phosphate supply. Phosphate deficiency resulted in a significant decrease in the leaf Pi, diminished rates of photosynthesis and a decrease in the sucrose/starch ratio in the leaves. Changes in the cytoplasmic Pi content were relatively small in comparison with the large variations in vacuolar Pi. The cytoplasmic Pi concentration was slightly higher in the leaves of plants grown at 25 mmol·l(-1) Pi than in those grown at 1 mmol·l(-1) Pi and was decreased in the phosphate-deficient plants in which photosynthesis was inhibited. With barley plants grown in phosphate-deficient media, very little, if any, Pi was present in the vacuole. All of the cellular Pi was in the cytoplasm. Barley, spinach (Spinacia oleracea L.) and soya (Glycine max L.) plants were grown to a comparative stage of phosphate deficiency as measured by leaf Pi levels. These species showed a uniform response to phosphate deficiency by increasing starch synthesis relative to sucrose but the accompanying limitation on photosynthetic capacity varied considerably among the species. Interspecific differences in assimilate partitioning between starch and sucrose were maintained over a wide range of Pi supply.

PubMed Disclaimer

References

    1. Planta. 1985 May;164(2):172-8 - PubMed
    1. Plant Physiol. 1984 Jul;75(3):561-5 - PubMed
    1. FEBS Lett. 1970 Oct 5;10(3):143-148 - PubMed
    1. Arch Biochem Biophys. 1981 Nov;212(1):237-46 - PubMed
    1. Plant Physiol. 1984 Jul;75(3):548-53 - PubMed

LinkOut - more resources