Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Apr 1;23(7):1934-46.
doi: 10.1093/hmg/ddt581. Epub 2013 Nov 15.

A large-scale assessment of two-way SNP interactions in breast cancer susceptibility using 46,450 cases and 42,461 controls from the breast cancer association consortium

Roger L Milne  1 Jesús HerranzKyriaki MichailidouJoe DennisJonathan P TyrerM Pilar ZamoraJosé Ignacio Arias-PerezAnna González-NeiraGuillermo PitaM Rosario AlonsoQin WangManjeet K BollaKamila CzeneMikael ErikssonKeith HumphreysHatef DarabiJingmei LiHoda Anton-CulverSusan L NeuhausenArgyrios ZiogasChristina A ClarkeJohn L HopperGillian S DiteCarmel ApicellaMelissa C SoutheyGeorgia Chenevix-TrenchkConFab InvestigatorsAustralian Ovarian Cancer Study GroupAnthony SwerdlowAlan AshworthNicholas OrrMinouk SchoemakerAnna JakubowskaJan LubinskiKatarzyna Jaworska-BieniekKatarzyna DurdaIrene L AndrulisJulia A KnightGord GlendonAnna Marie MulliganStig E BojesenBørge G NordestgaardHenrik FlygerHeli NevanlinnaTaru A MuranenKristiina AittomäkiCarl BlomqvistJenny Chang-ClaudeAnja RudolphPetra SeiboldDieter Flesch-JanysXianshu WangJanet E OlsonCeline VachonKristen PurringtonRobert WinqvistKatri PylkäsArja Jukkola-VuorinenMervi GripAlison M DunningMitul ShahPascal GuénelThérèse TruongMarie SanchezClaire MulotHermann BrennerAida Karina DieffenbachVolker ArndtChrista StegmaierAnnika LindblomSara MargolinMaartje J HooningAntoinette HollestelleJ Margriet ColléeAgnes JagerAngela CoxIan W BrockMalcolm W R ReedPeter DevileeRobert A E M TollenaarCaroline SeynaeveChristopher A HaimanBrian E HendersonFredrick SchumacherLoic Le MarchandJacques SimardMartine DumontPenny SoucyThilo DörkNatalia V BogdanovaUte HamannAsta FörstiThomas RüdigerHans-Ulrich UlmerPeter A FaschingLothar HäberleArif B EkiciMatthias W BeckmannOlivia FletcherNichola JohnsonIsabel dos Santos SilvaJulian PetoPaolo RadicePaolo PeterlongoBernard PeisselPaolo MarianiGraham G GilesGianluca SeveriLaura BagliettoElinor SawyerIan TomlinsonMichael KerinNicola MillerFederik MarmeBarbara BurwinkelArto MannermaaVesa KatajaVeli-Matti KosmaJaana M HartikainenDiether LambrechtsBetul T YesilyurtGiuseppe FlorisKarin LeunenGrethe Grenaker AlnæsVessela KristensenAnne-Lise Børresen-DaleMontserrat García-ClosasStephen J ChanockJolanta LissowskaJonine D FigueroaMarjanka K SchmidtAnnegien BroeksSenno VerhoefEmiel J RutgersHiltrud BrauchThomas BrüningYon-Dschun KoGENICA NetworkFergus J CouchAmanda E TolandTNBCCDrakoulis YannoukakosPaul D P PharoahPer HallJavier BenítezNúria MalatsDouglas F Easton
Collaborators, Affiliations

A large-scale assessment of two-way SNP interactions in breast cancer susceptibility using 46,450 cases and 42,461 controls from the breast cancer association consortium

Roger L Milne et al. Hum Mol Genet. .

Abstract

Part of the substantial unexplained familial aggregation of breast cancer may be due to interactions between common variants, but few studies have had adequate statistical power to detect interactions of realistic magnitude. We aimed to assess all two-way interactions in breast cancer susceptibility between 70,917 single nucleotide polymorphisms (SNPs) selected primarily based on prior evidence of a marginal effect. Thirty-eight international studies contributed data for 46,450 breast cancer cases and 42,461 controls of European origin as part of a multi-consortium project (COGS). First, SNPs were preselected based on evidence (P < 0.01) of a per-allele main effect, and all two-way combinations of those were evaluated by a per-allele (1 d.f.) test for interaction using logistic regression. Second, all 2.5 billion possible two-SNP combinations were evaluated using Boolean operation-based screening and testing, and SNP pairs with the strongest evidence of interaction (P < 10(-4)) were selected for more careful assessment by logistic regression. Under the first approach, 3277 SNPs were preselected, but an evaluation of all possible two-SNP combinations (1 d.f.) identified no interactions at P < 10(-8). Results from the second analytic approach were consistent with those from the first (P > 10(-10)). In summary, we observed little evidence of two-way SNP interactions in breast cancer susceptibility, despite the large number of SNPs with potential marginal effects considered and the very large sample size. This finding may have important implications for risk prediction, simplifying the modelling required. Further comprehensive, large-scale genome-wide interaction studies may identify novel interacting loci if the inherent logistic and computational challenges can be overcome.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
Q–Q plots from the first set of analyses based on the χ2 statistics from the 1 d.f. LRT for (A) overall breast cancer, (B) oestrogen receptor (ER)-positive breast cancer and (C) ER-negative breast cancer.
Figure 2.
Figure 2.
Schematic representation of the two strategies applies to assess pairwise interactions in susceptibility to overall breast cancer risk between the 70 917 SNPs considered.

References

    1. Bojesen S.E., Pooley K.A., Johnatty S.E., Beesley J., Michailidou K., Tyrer J.P., Edwards S.L., Pickett H.A., Shen H.C., Smart C.E., et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat. Genet. 2013;45:371–384. doi:10.1038/ng.2566. - DOI - PMC - PubMed
    1. Garcia-Closas M., Couch F.J., Lindstrom S., Michailidou K., Schmidt M.K., Brook M.N., Orr N., Rhie S.K., Riboli E., Feigelson H.S., et al. Genome-wide association studies identify four ER negative-specific breast cancer risk loci. Nat. Genet. 2013;45:392–398. doi:10.1038/ng.2561. - DOI - PMC - PubMed
    1. Michailidou K., Hall P., Gonzalez-Neira A., Ghoussaini M., Dennis J., Milne R.L., Schmidt M.K., Chang-Claude J., Bojesen S.E., Bolla M.K., et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat. Genet. 2013;45:353–361. doi:10.1038/ng.2563. - DOI - PMC - PubMed
    1. Cox A., Dunning A.M., Garcia-Closas M., Balasubramanian S., Reed M.W., Pooley K.A., Scollen S., Baynes C., Ponder B.A., Chanock S., et al. A common coding variant in CASP8 is associated with breast cancer risk. Nat. Genet. 2007;39:352–358. doi:10.1038/ng1981. - DOI - PubMed
    1. Easton D.F., Pooley K.A., Dunning A.M., Pharoah P.D., Thompson D., Ballinger D.G., Struewing J.P., Morrison J., Field H., Luben R., et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature. 2007;447:1087–1093. doi:10.1038/nature05887. - DOI - PMC - PubMed

Publication types

Grants and funding