Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Nov;13(11):7498-503.
doi: 10.1166/jnn.2013.7905.

Synthesis of mesoporous SAPO-34 zeolite from mesoporous silica materials for methanol to light olefins

Affiliations

Synthesis of mesoporous SAPO-34 zeolite from mesoporous silica materials for methanol to light olefins

Eun A Kang et al. J Nanosci Nanotechnol. 2013 Nov.

Abstract

Mesoporous SAPO-34 zeolites were synthesized by using as-prepared mesoporous silica material as both silica source and mesopore tailor. The mesoporous SAPO-34 zeolite materials thus obtained are characterized by a series of different techniques, including poweder X-ray diffraction pattern, nitrogen physisorption analysis, scanning electron micrograph, temperature programmed desorption of ammonia, and inductively coupled plasma atomic emission spectrometry. The resultant mesoporous SAPO-34 crystals exhibit sphere-like particle with zeolite layer units. The mesopore size distribution and particle size can be changed by amounts of silica source and water. The methanol-to-olefins (MTO) reactions using these mesoporous SAPO-34 zeolites are carried out with a fixed-bed reactor. Catalytic tests exhibit that the mesoporous SAPO-34 zeolite materials show high catalytic activity compared with the conventional SAPO-34 for MTO reaction. The better catalytic activity and longer life time of the mesoporous SAPO-34 catalysts in MTO are mainly due to the existence of the mesoporosity of SAPO-34 with small particle size.

PubMed Disclaimer

Publication types

LinkOut - more resources