Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Feb 4;1(1):7.
doi: 10.1186/2050-7771-1-7.

Noninvasive biomarkers for the diagnosis of steatohepatitis and advanced fibrosis in NAFLD

Affiliations

Noninvasive biomarkers for the diagnosis of steatohepatitis and advanced fibrosis in NAFLD

Steven G Pearce et al. Biomark Res. .

Abstract

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of abnormal liver enzymes in both adults and children. NAFLD has a histologic spectrum ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), advanced fibrosis, and cirrhosis. It is imperative to distinguish simple steatosis from NASH since the latter has a progressive disease course and can lead to end-stage liver disease. Liver biopsy has been considered as the gold standard for the diagnosis of NASH. However, liver biopsy is invasive, costly, and can rarely cause significant morbidity (risk of morbidity, 0.06-0.35%; risk of mortality, 0.1-0.01%). Imaging studies such as ultrasonography, computed tomography, and magnetic resonance imaging have limited sensitivity in detecting steatosis and cannot distinguish steatosis from NASH. Alanine aminotransferase (ALT) has been used as a surrogate marker for liver injuries. However, ALT is not an ideal marker for either diagnosis of NAFLD or distinguishing steatosis from NASH. Better noninvasive biomarkers or panels of biomarkers that are cheaper, reliable, and reproducible are urgently needed for patients with NASH to assist in establishing diagnosis, providing risk information, and monitoring disease progression and treatment response. In this article, we plan to concisely review the current advances in the use of biomarkers for the diagnosis of NASH.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 2002;346:1221–1231. doi: 10.1056/NEJMra011775. - DOI - PubMed
    1. Wieckowska A, Feldstein AE. Nonalcoholic fatty liver disease in the pediatric population: a review. Curr Opin Pediatr. 2005;17:636–641. doi: 10.1097/01.mop.0000172816.79637.c5. - DOI - PubMed
    1. Ekstedt M, Franzen LE, Mathiesen UL, Thorelius L, Holmqvist M, Bodemar G, Kechagias S. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology. 2006;44:865–873. doi: 10.1002/hep.21327. - DOI - PubMed
    1. Xie L, Yui J, Hatori A, Yamasaki T, Kumata K, Wakizaka H, Yoshida Y, Fujinaga M, Kawamura K, Zhang MR. Translocator protein (18 kDa), a potential molecular imaging biomarker for non-invasively distinguishing non-alcoholic fatty liver disease. J Hepatol. 2012;57:1076–1082. doi: 10.1016/j.jhep.2012.07.002. - DOI - PubMed
    1. Soderberg C, Stal P, Askling J, Glaumann H, Lindberg G, Marmur J, Hultcrantz R. Decreased survival of subjects with elevated liver function tests during a 28-year follow-up. Hepatology. 2010;51:595–602. doi: 10.1002/hep.23314. - DOI - PubMed