Oxidative cyclization reactions: controlling the course of a radical cation-derived reaction with the use of a second nucleophile
- PMID: 24254900
- PMCID: PMC4374546
- DOI: 10.1002/anie.201308739
Oxidative cyclization reactions: controlling the course of a radical cation-derived reaction with the use of a second nucleophile
Abstract
Construction of new ring systems: Oxidative cyclizations (see picture; RVC=reticulated vitreous carbon) have been conducted that use two separate intramolecular nucleophiles to trap an enol ether-derived radical cation intermediate. The reactions provide a means for rapidly trapping the radical cation intermediate in a manner that avoids competitive decomposition reactions.
Keywords: anodic cyclizations; electrochemistry; radical ions; reactive intermediates.
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Figures







Similar articles
-
Intramolecular anodic olefin coupling reactions: using competition studies to probe the mechanism of oxidative cyclization reactions.Org Lett. 2010 Apr 16;12(8):1720-3. doi: 10.1021/ol100317t. Org Lett. 2010. PMID: 20302359 Free PMC article.
-
The Prowess of Photogenerated Amine Radical Cations in Cascade Reactions: From Carbocycles to Heterocycles.Acc Chem Res. 2016 Sep 20;49(9):1957-68. doi: 10.1021/acs.accounts.6b00263. Epub 2016 Aug 18. Acc Chem Res. 2016. PMID: 27536956
-
Oxidative cyclization based on reversing the polarity of enol ethers and ketene dithioacetals. Construction of a tetrahydrofuran ring and application to the synthesis of (+)-nemorensic Acid.J Am Chem Soc. 2002 Aug 28;124(34):10101-11. doi: 10.1021/ja026739l. J Am Chem Soc. 2002. PMID: 12188674
-
Electro-/photocatalytic alkene-derived radical cation chemistry: recent advances in synthetic applications.Chem Soc Rev. 2022 Aug 15;51(16):7206-7237. doi: 10.1039/d2cs00013j. Chem Soc Rev. 2022. PMID: 35880555 Review.
-
Consecutive carbon-carbon bond formation approach in tandem cyclization reactions.Chem Rec. 2001;1(6):415-21. doi: 10.1002/tcr.10000. Chem Rec. 2001. PMID: 11933248 Review.
Cited by
-
Electrifying Organic Synthesis.Angew Chem Int Ed Engl. 2018 May 14;57(20):5594-5619. doi: 10.1002/anie.201711060. Epub 2018 Mar 7. Angew Chem Int Ed Engl. 2018. PMID: 29292849 Free PMC article. Review.
-
Radical C-H functionalization of heteroarenes under electrochemical control.Angew Chem Int Ed Engl. 2014 Oct 27;53(44):11868-71. doi: 10.1002/anie.201407948. Epub 2014 Sep 10. Angew Chem Int Ed Engl. 2014. PMID: 25209429 Free PMC article.
-
Synthetic Organic Electrochemistry: An Enabling and Innately Sustainable Method.ACS Cent Sci. 2016 May 25;2(5):302-8. doi: 10.1021/acscentsci.6b00091. Epub 2016 May 5. ACS Cent Sci. 2016. PMID: 27280164 Free PMC article. Review.
-
Chan-Evans-Lam Cu(II)-Catalyzed C-O Cross-Couplings: Broadening Synthetic Access to Functionalized Vinylic Ethers.Org Lett. 2025 Jul 11;27(27):7326-7330. doi: 10.1021/acs.orglett.5c01966. Epub 2025 Jun 27. Org Lett. 2025. PMID: 40576115 Free PMC article.
-
Selective electrochemical generation of benzylic radicals enabled by ferrocene-based electron-transfer mediators.Chem Sci. 2017 Nov 6;9(2):356-361. doi: 10.1039/c7sc04032f. eCollection 2018 Jan 14. Chem Sci. 2017. PMID: 29732109 Free PMC article.
References
-
-
For radical cation-initiated cyclizations derived from chemical oxidations see: Crich D, Ranganathan K, Neelamkavil S, Huang X. J Am Chem Soc. 2003;125:7942.; Crich D, Shirai V, Brebion F, Rumthao S. Tetrahedron. 2006;62:6501.; Crich D, Ranganathan K. J Am Chem Soc. 2005;127:9924.; Crich D, Shirai M, Rumthao S. Org Lett. 2003;5:3767.; Conrad JC, Kong J, Laforteza BN, MacMillan DWC. J Am Chem Soc. 2009;131:11640.; Jui NT, Lee ECY, MacMillan DWC. J Am Chem Soc. 2010;132:10015.; Rendler S, MacMillan DWC. J Am Chem Soc. 2010;132:5027.; Hamilton DS, Nicewicz DA. J Am Chem Soc. 2012;134:18577.; Wilger DA, Gesmundo NJ, Nicewicz DA. Chem Sci. 2013;4:3160.
-
-
-
For general reviews of radical cation-initiated cyclizations derived from electrochemical oxidations see: Moeller KD. Tetrahedron. 2000;56:9527.; Sperry JB, Wright DL. Chem Soc Rev. 2006;35:605.; Yoshida J, Kataoka K, Horcajada R, Nagaki A. Chem Rev. 2009;109:2265.
-
-
-
For a recent review see: Moeller KD. Synlett. 2009;8:1208. For earlier work see reference [2a]. For selected recent examples see: Ashikari Y, Nokami T, Yoshida J. Org Biomol Chem. 2013;11:3322.; Xu HC, Moeller KD. Angew Chem. 2010;122:8176.; Angew Chem Int Ed. 2010;49:8004.; Perkins RJ, Xu HC, Campbell JM, Moeller KD. Beilstein J Org Chem. 2013;9:1630.; Anderson LA, Redden A, Moeller KD. Green Chem. 2011;13:1652.
-
-
-
See for example: Campbell JM, Xu HC, Moeller KD. J Am Chem Soc. 2012;134:18338.; Tang F, Moeller KD. Tetrahedron. 2009;65:10863.; Sun Y, Moeller KD. Tetrahedron Lett. 2002;43:7159.
-
-
- Tinao-Wooldridge LV, Moeller KD, Hudson CM. J Org Chem. 1994;59:238.
-
For similar results with a bridged bicyclic system see: Reddy SHK, Chiba K, Sun Y, Moeller KD. Tetrahedron. 2001;57:5183.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources