Cooperative self-assembly of peptide gelators and proteins
- PMID: 24256076
- PMCID: PMC4374667
- DOI: 10.1021/bm401319c
Cooperative self-assembly of peptide gelators and proteins
Abstract
Molecular self-assembly provides a versatile route for the production of nanoscale materials for medical and technological applications. Herein, we demonstrate that the cooperative self-assembly of amphiphilic small molecules and proteins can have drastic effects on supramolecular nanostructuring of resulting materials. We report that mesoscale, fractal-like clusters of proteins form at concentrations that are orders of magnitude lower compared to those usually associated with molecular crowding at room temperature. These protein clusters have pronounced effects on the molecular self-assembly of aromatic peptide amphiphiles (fluorenylmethoxycarbonyl- dipeptides), resulting in a reversal of chiral organization and enhanced order through templating and binding. Moreover, the morphological and mechanical properties of the resultant nanostructured gels can be controlled by the cooperative self-assembly of peptides and protein fractal clusters, having implications for biomedical applications where proteins and peptides are both present. In addition, fundamental insights into cooperative interplay of molecular interactions and confinement by clusters of chiral macromolecules is relevant to gaining understanding of the molecular mechanisms of relevance to the origin of life and development of synthetic mimics of living systems.
Figures







Similar articles
-
An additional fluorenylmethoxycarbonyl (Fmoc) moiety in di-Fmoc-functionalized L-lysine induces pH-controlled ambidextrous gelation with significant advantages.Soft Matter. 2015 Nov 7;11(41):8126-40. doi: 10.1039/c5sm01767j. Soft Matter. 2015. PMID: 26338226
-
Supramolecular hydrogels respond to ligand-receptor interaction.J Am Chem Soc. 2003 Nov 12;125(45):13680-1. doi: 10.1021/ja036817k. J Am Chem Soc. 2003. PMID: 14599204
-
Effect of Chirality on Cell Spreading and Differentiation: From Chiral Molecules to Chiral Self-Assembly.ACS Appl Mater Interfaces. 2019 Oct 23;11(42):38568-38577. doi: 10.1021/acsami.9b15710. Epub 2019 Oct 11. ACS Appl Mater Interfaces. 2019. PMID: 31584794
-
Dehydropeptide Supramolecular Hydrogels and Nanostructures as Potential Peptidomimetic Biomedical Materials.Int J Mol Sci. 2021 Mar 3;22(5):2528. doi: 10.3390/ijms22052528. Int J Mol Sci. 2021. PMID: 33802425 Free PMC article. Review.
-
Self-assembly of small peptide amphiphiles, the structures formed and their applications. (A foods and home and personal care perspective).Philos Trans A Math Phys Eng Sci. 2016 Jul 28;374(2072):20150138. doi: 10.1098/rsta.2015.0138. Philos Trans A Math Phys Eng Sci. 2016. PMID: 27298432 Review.
Cited by
-
Supramolecular Peptide Nanofiber Hydrogels for Bone Tissue Engineering: From Multihierarchical Fabrications to Comprehensive Applications.Adv Sci (Weinh). 2022 Apr;9(11):e2103820. doi: 10.1002/advs.202103820. Epub 2022 Feb 7. Adv Sci (Weinh). 2022. PMID: 35128831 Free PMC article. Review.
-
Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials.Chem Rev. 2015 Dec 23;115(24):13165-307. doi: 10.1021/acs.chemrev.5b00299. Epub 2015 Dec 8. Chem Rev. 2015. PMID: 26646318 Free PMC article. Review.
-
Multicomponent peptide assemblies.Chem Soc Rev. 2018 May 21;47(10):3659-3720. doi: 10.1039/c8cs00115d. Chem Soc Rev. 2018. PMID: 29697126 Free PMC article. Review.
-
Glycopeptide-Based Supramolecular Hydrogels Induce Differentiation of Adipose Stem Cells into Neural Lineages.ACS Appl Mater Interfaces. 2023 Jun 28;15(25):29998-30007. doi: 10.1021/acsami.3c05309. Epub 2023 Jun 16. ACS Appl Mater Interfaces. 2023. PMID: 37327399 Free PMC article.
-
Protein-induced low molecular weight hydrogelator self-assembly through a self-sustaining process.Chem Sci. 2019 Mar 11;10(18):4761-4766. doi: 10.1039/c9sc00312f. eCollection 2019 May 14. Chem Sci. 2019. PMID: 31160952 Free PMC article.
References
-
- Lehn J. M.; Supramolecular Chemistry – concepts and perspectives: VCH: Weinheim, Germany, 1995;
- Whitesides G. M.; Grzybowski B. Science 2002, 295, 2418–21. - PubMed
- Aida T.; Meijer E. W.; Stupp S. I. Science 2012, 335, 813–817. - PMC - PubMed
- Fichman G.; Gazit E. Acta Biomater. 2013, DOI: 10.1016/j.bbr.2011.03.031. - PubMed
-
- Yang Z.; Gu H.; Fu D.; Gao P.; Lam J. K.; Xu B. Adv. Mater. 2004, 16, 1440–1444.
- Hirst A. R.; Roy S.; Arora M.; Das A. K.; Hodson N.; Murray P.; Marshall S.; Javid N.; Sefcik J.; Boekhoven J.; van Esch J. H.; Santabarbara S.; Hunt N. T.; Ulijn R. V. Nat. Chem. 2010, 2, 1089–1094. - PubMed
- Gao Y.; Shi J.; Yuan D.; Xu B. Nat. Commun. 2012, 3, 1033. - PMC - PubMed
- Hirst A. R.; Escuder B.; Miravet J. F.; Smith D. K. Angew. Chem., Int. Ed. 2008, 47, 8002–8020. - PubMed
- Fleming S.; Debnath S.; Frederix P. W. J. M.; Tuttle T.; Ulijn R. V. Chem. Commun. 2013, 49, 10587–10589. - PubMed
-
- Ellis R. J.; Minton A. P. Nature 2003, 425, 27–28. - PubMed
-
- Minton A. P. Curr. Opi. in Str. Biol. 2000, 10, 34–39. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources