The RNA- and DNA-targeting CRISPR-Cas immune systems of Pyrococcus furiosus
- PMID: 24256230
- PMCID: PMC3996508
- DOI: 10.1042/BST20130056
The RNA- and DNA-targeting CRISPR-Cas immune systems of Pyrococcus furiosus
Abstract
Using the hyperthermophile Pyrococcus furiosus, we have delineated several key steps in CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) invader defence pathways. P. furiosus has seven transcriptionally active CRISPR loci that together encode a total of 200 crRNAs (CRISPR RNAs). The 27 Cas proteins in this organism represent three distinct pathways and are primarily encoded in two large gene clusters. The Cas6 protein dices CRISPR locus transcripts to generate individual invader-targeting crRNAs. The mature crRNAs include a signature sequence element (the 5' tag) derived from the CRISPR locus repeat sequence that is important for function. crRNAs are tailored into distinct species and integrated into three distinct crRNA-Cas protein complexes that are all candidate effector complexes. The complex formed by the Cmr [Cas module RAMP (repeat-associated mysterious proteins)] (subtype III-B) proteins cleaves complementary target RNAs and can be programmed to cleave novel target RNAs in a prokaryotic RNAi-like manner. Evidence suggests that the other two CRISPR-Cas systems in P. furiosus, Csa (Cas subtype Apern) (subtype I-A) and Cst (Cas subtype Tneap) (subtype I-B), target invaders at the DNA level. Studies of the CRISPR-Cas systems from P. furiosus are yielding fundamental knowledge of mechanisms of crRNA biogenesis and silencing for three of the diverse CRISPR-Cas pathways, and reveal that organisms such as P. furiosus possess an arsenal of multiple RNA-guided mechanisms to resist diverse invaders. Our knowledge of the fascinating CRISPR-Cas pathways is leading in turn to our ability to co-opt these systems for exciting new biomedical and biotechnological applications.
Figures



Similar articles
-
Three CRISPR-Cas immune effector complexes coexist in Pyrococcus furiosus.RNA. 2015 Jun;21(6):1147-58. doi: 10.1261/rna.049130.114. Epub 2015 Apr 22. RNA. 2015. PMID: 25904135 Free PMC article.
-
DNA targeting by the type I-G and type I-A CRISPR-Cas systems of Pyrococcus furiosus.Nucleic Acids Res. 2015 Dec 2;43(21):10353-63. doi: 10.1093/nar/gkv1140. Epub 2015 Oct 30. Nucleic Acids Res. 2015. PMID: 26519471 Free PMC article.
-
Hot and crispy: CRISPR-Cas systems in the hyperthermophile Sulfolobus solfataricus.Biochem Soc Trans. 2013 Dec;41(6):1422-6. doi: 10.1042/BST20130031. Biochem Soc Trans. 2013. PMID: 24256231 Review.
-
Primed CRISPR DNA uptake in Pyrococcus furiosus.Nucleic Acids Res. 2020 Jun 19;48(11):6120-6135. doi: 10.1093/nar/gkaa381. Nucleic Acids Res. 2020. PMID: 32421777 Free PMC article.
-
Approaches to study CRISPR RNA biogenesis and the key players involved.Methods. 2020 Feb 1;172:12-26. doi: 10.1016/j.ymeth.2019.07.015. Epub 2019 Jul 17. Methods. 2020. PMID: 31325492 Review.
Cited by
-
An archaeal CRISPR type III-B system exhibiting distinctive RNA targeting features and mediating dual RNA and DNA interference.Nucleic Acids Res. 2015 Jan;43(1):406-17. doi: 10.1093/nar/gku1302. Epub 2014 Dec 10. Nucleic Acids Res. 2015. PMID: 25505143 Free PMC article.
-
Regulation of the RNA and DNA nuclease activities required for Pyrococcus furiosus Type III-B CRISPR-Cas immunity.Nucleic Acids Res. 2020 May 7;48(8):4418-4434. doi: 10.1093/nar/gkaa176. Nucleic Acids Res. 2020. PMID: 32198888 Free PMC article.
-
Hyper-stimulation of Pyrococcus furiosus CRISPR DNA uptake by a self-transmissible plasmid.Extremophiles. 2022 Nov 16;26(3):36. doi: 10.1007/s00792-022-01281-0. Extremophiles. 2022. PMID: 36385310 Free PMC article.
-
Target DNA recognition and cleavage by a reconstituted Type I-G CRISPR-Cas immune effector complex.Extremophiles. 2017 Jan;21(1):95-107. doi: 10.1007/s00792-016-0871-5. Epub 2016 Aug 31. Extremophiles. 2017. PMID: 27582008 Free PMC article.
-
O6-alkylguanine-DNA Alkyltransferases in Microbes Living on the Edge: From Stability to Applicability.Int J Mol Sci. 2020 Apr 20;21(8):2878. doi: 10.3390/ijms21082878. Int J Mol Sci. 2020. PMID: 32326075 Free PMC article. Review.
References
-
- Sorek R, Lawrence CM, Wiedenheft B. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu. Rev. Biochem. 2013;82:237–266. - PubMed
-
- Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature. 2012;482:331–338. - PubMed
-
- Westra ER, Swarts DC, Staals RH, Jore MM, Brouns SJ, van der Oost J. The CRISPRs, they are a-changin’: how prokaryotes generate adaptive immunity. Annu. Rev. Genet. 2012;46:311–339. - PubMed
-
- Bhaya D, Davison M, Barrangou R. CRISPR–Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu. Rev. Genet. 2011;45:273–297. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases