Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Dec;41(6):1593-7.
doi: 10.1042/BST20130142.

The intriguing case of motor neuron disease: ALS and SMA come closer

Affiliations
Review

The intriguing case of motor neuron disease: ALS and SMA come closer

Tilmann Achsel et al. Biochem Soc Trans. 2013 Dec.

Abstract

MNDs (motor neuron diseases) form a heterogeneous group of pathologies characterized by the progressive degeneration of motor neurons. More and more genetic factors associated with MND encode proteins that have a function in RNA metabolism, suggesting that disturbed RNA metabolism could be a common underlying problem in several, perhaps all, forms of MND. In the present paper we review recent developments showing a functional link between SMN (survival of motor neuron), the causative factor of SMA (spinal muscular atrophy), and FUS (fused in sarcoma), a genetic factor in ALS (amyotrophic lateral sclerosis). SMN is long known to have a crucial role in the biogenesis and localization of the spliceosomal snRNPs (small nuclear ribonucleoproteins), which are essential assembly modules of the splicing machinery. Now we know that FUS interacts with SMN and pathogenic FUS mutations have a significant effect on snRNP localization. Together with other recently published evidence, this finding potentially links ALS pathogenesis to disturbances in the splicing machinery, and implies that pre-mRNA splicing may be the common weak point in MND, although other steps in mRNA metabolism could also play a role. Certainly, further comparison of the RNA metabolism in different MND will greatly help our understanding of the molecular causes of these devastating diseases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources