Comparative in vitro activity of sulfametrole/trimethoprim and sulfamethoxazole/trimethoprim and other agents against multiresistant Gram-negative bacteria
- PMID: 24257317
- DOI: 10.1093/jac/dkt455
Comparative in vitro activity of sulfametrole/trimethoprim and sulfamethoxazole/trimethoprim and other agents against multiresistant Gram-negative bacteria
Abstract
Objectives: Sulfamethoxazole/trimethoprim is standard therapy for infections caused by opportunist non-fermenters except Pseudomonas aeruginosa and Acinetobacter. Sulfametrol(e)/trimethoprim is an alternative to sulfamethoxazole/trimethoprim available in some EU countries, with possible pharmacological advantages. We compared their activities against (i) non-fermenters, (ii) multiresistant Enterobacteriaceae and (iii) reference strains with sul1 and sul2.
Methods: Test isolates were recent submissions to the reference laboratory, or were Escherichia coli previously shown to have sul1 or sul2. Identification was by MALDI-ToF, by 16S rRNA gene sequencing or with API20NE strips. MICs were determined by CLSI agar dilution. The Stenotrophomonas maltophilia and Burkholderia series were enhanced by inclusion of 25% sulfamethoxazole/trimethoprim-resistant isolates; other series were not enhanced.
Results: MICs of sulfametrole/trimethoprim for non-fermenters tracked those of sulfamethoxazole/trimethoprim, being equal in 97/170 cases, 2-fold higher in 57/170 cases and 2-fold lower in 12/170 cases. Despite supplementing the Burkholderia and S. maltophilia collections with sulfamethoxazole/trimethoprim-resistant organisms, the antifolate combinations retained better activity against these and other non-fermenters than did piperacillin/tazobactam, moxifloxacin, ticarcillin/clavulanate, tigecycline, cefotaxime or imipenem. By contrast, few (5%-20%) of the extended-spectrum β-lactamase (ESBL)- and carbapenemase-producing Enterobacteriaceae were susceptible to the sulphonamides or their trimethoprim combinations, probably reflecting widespread co-carriage of sul1 and sul2, which both conferred resistance.
Conclusions: Antifolate combinations remain the most active antimicrobials against less common non-fermenters, importantly including S. maltophilia and Burkholderia spp., but resistance is prevalent among ESBL- and carbapenemase-producing Enterobacteriaceae. Sulfametrole/trimethoprim had similar activity to sulfamethoxazole/trimethoprim against non-fermenters.
Keywords: Stenotrophomonas maltophilia; cystic fibrosis; non-fermenters.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
