Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Dec;17(12):2367-79.
doi: 10.1007/BF00994588.

Sequestration of ingested [(14)C]senecionineN-oxide in the exocrine defensive secretions of chrysomelid beetles

Affiliations

Sequestration of ingested [(14)C]senecionineN-oxide in the exocrine defensive secretions of chrysomelid beetles

A Ehmke et al. J Chem Ecol. 1991 Dec.

Abstract

Oreina cacaliae (Chrysomelidae) sequesters in its elytral and pronotal defensive secretion theN-oxides of pyrrolizidine alkaloids (PAN-oxides) from its food plantAdenostyles alliariae (Asteraceae). [(14)C]SenecionineN-oxide was applied for detailed studies of PAN-oxide sequestration. An average of 11.4% of total radioactivity is taken up by individual beetles which had received [(14)C]senecionineN-oxide with their food leaves 8 days before. An average of 28.9% of the ingested radioactivity could be recovered from the defensive secretions collected twice, i.e., 5 and 8 days after tracer feeding. The tracer transfer into the secretion seems to be a slow but progressive process as indicated by the high percentage of tracer still recovered from the secretion sampled after 8 days. Chromatographic analysis revealed that [(14)C]senecionineN-oxide is the only labeled compound in the defensive secretion. Beetles that fed on tertiary [(14)C]senecionine sequestered only trace amounts of radioactivity (exclusively present as labeled IV-oxide) in their secretions.O. speciosissima, a species also adapted to PA containing food plants, was shown to sequester [(14)C]senecionineN-oxide with the same efficiency asO. cacaliae. O. bifrons, a specialist feeding onChaerophyllum hirsutum (Apiaceae), rejected PA treated leaf samples already at very low PA concentrations (10 nmol/leaf piece). In bothO. cacaliae andO. speciosissima, [(14)C]senecionineN-oxide applied by injection into the hemolymph is rapidly transferred into the glands.O. bifrons, not adapted to pyrrolizidine alkaloid containing plants was unable to sequester [(14)C]-senecionineN- oxide in the secretion but rapidly eliminated the tracer with the frass. Again, only traces of labeled [(14)C]senecionineN-oxide were found in the defensive secretions of the two PA adapted species if labeled senecionine was injected. It is suggested that the beetles are adapted to theN-oxide form of PAs, similarly as their food plants, and that they lack the ability to efficientlyN-oxidize tertiary PAs. No indication forde novo PA synthesis by the beetles was found in tracer feeding experiments with the biogenetic PA precursor putrescine.

PubMed Disclaimer

References

    1. J Chem Ecol. 1990 Jan;16(1):165-85 - PubMed
    1. Planta. 1988 Nov;176(1):83-90 - PubMed
    1. Planta. 1989 Jan;177(1):98-107 - PubMed
    1. J Chem Ecol. 1985 Mar;11(3):311-8 - PubMed
    1. Planta. 1988 Jul;175(1):82-90 - PubMed