Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jul;20(7):2140-8.
doi: 10.1111/gcb.12471. Epub 2014 Apr 25.

Prediction of enteric methane emissions from cattle

Affiliations
Free article

Prediction of enteric methane emissions from cattle

Luis E Moraes et al. Glob Chang Biol. 2014 Jul.
Free article

Abstract

Agriculture has a key role in food production worldwide and it is a major component of the gross domestic product of several countries. Livestock production is essential for the generation of high quality protein foods and the delivery of foods in regions where animal products are the main food source. Environmental impacts of livestock production have been examined for decades, but recently emission of methane from enteric fermentation has been targeted as a substantial greenhouse gas source. The quantification of methane emissions from livestock on a global scale relies on prediction models because measurements require specialized equipment and may be expensive. The predictive ability of current methane emission models remains poor. Moreover, the availability of information on livestock production systems has increased substantially over the years enabling the development of more detailed methane prediction models. In this study, we have developed and evaluated prediction models based on a large database of enteric methane emissions from North American dairy and beef cattle. Most probable models of various complexity levels were identified using a Bayesian model selection procedure and were fitted under a hierarchical setting. Energy intake, dietary fiber and lipid proportions, animal body weight and milk fat proportion were identified as key explanatory variables for predicting emissions. Models here developed substantially outperformed models currently used in national greenhouse gas inventories. Additionally, estimates of repeatability of methane emissions were lower than the ones from the literature and multicollinearity diagnostics suggested that prediction models are stable. In this context, we propose various enteric methane prediction models which require different levels of information availability and can be readily implemented in national greenhouse gas inventories of different complexity levels. The utilization of such models may reduce errors associated with prediction of methane and allow a better examination and representation of policies regulating emissions from cattle.

Keywords: bayesian modeling; climate change; livestock; methane; prediction.

PubMed Disclaimer

Publication types

LinkOut - more resources