Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2013 Nov 21;15(11):e252.
doi: 10.2196/jmir.2781.

Using multiple imputations to accommodate time-outs in online interventions

Affiliations
Randomized Controlled Trial

Using multiple imputations to accommodate time-outs in online interventions

Susan M Shortreed et al. J Med Internet Res. .

Abstract

Background: Accurately estimating the period of time that individuals are exposed to online intervention content is important for understanding program engagement. This can be calculated from time-stamped data reflecting navigation to and from individual webpages. Prolonged periods of inactivity are commonly handled with a time-out feature and assigned a prespecified exposure duration. Unfortunately, this practice can lead to biased results describing program exposure.

Objective: The aim of the study was to describe how multiple imputations can be used to better account for the time spent viewing webpages that result in a prolonged period of inactivity or a time-out.

Methods: To illustrate this method, we present data on time-outs collected from the Q(2) randomized smoking cessation trial. For this analysis, we evaluate the effects on intervention exposure of receiving content written in a prescriptive versus motivational tone. Using multiple imputations, we created five complete datasets in which the time spent viewing webpages that resulted in a time-out were replaced with values estimated with imputation models. We calculated standard errors using Rubin's formulas to account for the variability due to the imputations. We also illustrate how current methods of accounting for time-outs (excluding timed-out page views or assigning an arbitrary viewing time) can influence conclusions about participant engagement.

Results: A total of 63.00% (1175/1865) of participants accessed the online intervention in the Q(2) trial. Of the 6592 unique page views, 683 (10.36%, 683/6592) resulted in a time-out. The median time spent viewing webpages that did not result in a time-out was 1.07 minutes. Assuming participants did not spend any time viewing a webpage that resulted in a time-out, no difference between the two message tones was observed (ratio of mean time online: 0.87, 95% CI 0.75-1.02). Assigning 30 minutes of viewing time to all page views that resulted in a time-out concludes that participants who received content in a motivational tone spent less time viewing content (ratio of mean time online: 0.86, 95% CI 0.77-0.98) than those participants who received content in a prescriptive tone. Using multiple imputations to account for time-outs concludes that there is no difference in participant engagement between the two message tones (ratio of mean time online: 0.87; 95% CI 0.75-1.01).

Conclusions: The analytic technique chosen can significantly affect conclusions about online intervention engagement. We propose a standardized methodology in which time spent viewing webpages that result in a time-out is treated as missing information and corrected with multiple imputations.

Trial registration: Clinicaltrials.gov NCT00992264; http://clinicaltrials.gov/ct2/show/NCT00992264 (Archived by WebCite at http://www.webcitation.org/6Kw5m8EkP).

Keywords: Internet; automatic time-out; behavioral research; engagement; multiple imputations; online interventions; smoking cessation; time spent online; utilization.

PubMed Disclaimer

Conflict of interest statement

Conflicts of Interest: Dr Shortreed has received funding from research grants awarded to Group Health Research Institute by Bristol Meyers Squibb. Mr Bogart and Dr McClure have no conflicts of interest to declare.

Figures

Figure 1
Figure 1
Distribution of minutes spent viewing an intervention page, excluding page views that resulted in an automatic time-out.
Figure 2
Figure 2
Sensitivity of model results to assigning an arbitrary time spent online to page views that resulted in a time-out (estimate from the zero-inflated Poisson model for the ratio of the mean time spent online comparing individuals who received content in a prescriptive [RX] tone versus a motivational tone [MI]).

References

    1. Bennett GG, Glasgow RE. The delivery of public health interventions via the Internet: actualizing their potential. Annu Rev Public Health. 2009;30:273–92. doi: 10.1146/annurev.publhealth.031308.100235. - DOI - PubMed
    1. Baker TB, Gustafson DH, Shaw B, Hawkins R, Pingree S, Roberts L, Strecher V. Relevance of CONSORT reporting criteria for research on eHealth interventions. Patient Educ Couns. 2010 Dec;81 Suppl:S77–86. doi: 10.1016/j.pec.2010.07.040. http://europepmc.org/abstract/MED/20843621 - DOI - PMC - PubMed
    1. Proudfoot J, Klein B, Barak A, Carlbring P, Cuijpers P, Lange A, Ritterband L, Andersson G. Establishing guidelines for executing and reporting Internet intervention research. Cognitive Behaviour Therapy. 2011 Jun 12;40(2):82–97. - PubMed
    1. Peterson ET. Web Site Measurement Hacks. Sebastopol, CA: O'Reilly Media; 2005.
    1. Danaher BG, Boles SM, Akers L, Gordon JS, Severson HH. Defining participant exposure measures in Web-based health behavior change programs. J Med Internet Res. 2006;8(3):e15. doi: 10.2196/jmir.8.3.e15. http://www.jmir.org/2006/3/e15/ - DOI - PMC - PubMed

Publication types

Associated data