Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Mar;133(3):571-577.
doi: 10.1097/01.prs.0000438063.31043.79.

Prevention of capsular contracture with photochemical tissue passivation

Affiliations

Prevention of capsular contracture with photochemical tissue passivation

Justin R Fernandes et al. Plast Reconstr Surg. 2014 Mar.

Abstract

Background: Capsular contracture is the most common complication following the insertion of breast implants. Within a decade, half of patients will develop capsular contracture, leading to significant morbidity and need for reoperation. There is no preventative treatment available and the recurrence rate remains high. Photochemical tissue passivation is a novel tissue-stabilization technique that results in collagen cross-linking. It can rapidly link collagen fibers in situ, preserving normal tissue architecture. By using this therapy to passivate the collagenous tissues of the implant pocket, the authors hope to prevent the development of pathogenic collagen bundles and subsequent capsule contracture.

Methods: Six-cubic centimeter tissue expanders were placed below the panniculus carnosus muscle along the dorsum of New Zealand white rabbits. Fibrin glue was instilled into each implant pocket to induce contracture. Treated pockets received photochemical tissue passivation by coating them with a photosensitizing dye and exposing the area to a 532-nm light. After 8 weeks, capsule tissue was harvested for histologic evaluation.

Results: Implant capsule thickness is the number one prognostic factor for contracture development. The authors demonstrated a 52 percent decrease in capsule thickness in the passivated group compared with controls. Photochemical tissue passivation resulted in fewer fibrohistiocytic cells and macrophages and in reduced synovial metaplasia and smooth muscle actin deposition.

Conclusions: Photochemical tissue passivation significantly decreased both capsule thickness and smooth muscle actin deposition. It is a promising technique for preventing capsular contracture that can be performed at the time of initial surgery without a significant increase in procedure time.

PubMed Disclaimer

Comment in

References

    1. Malata CM, Feldberg L, Coleman DJ, Foo IT, Sharpe DT. Textured or smooth implants for breast augmentation? Three year follow-up of a prospective randomised controlled trial. Br J Plast Surg. 1997;50:99–105
    1. Blount AL, Martin MD, Lineberry KD, Kettaneh N, Alfonso DR. Capsular contracture rate in a low-risk population after primary augmentation mammaplasty. Aesthet Surg J. 2013;33:516–521
    1. Araco A, Caruso R, Araco F, Overton J, Gravante G. Capsular contractures: A systematic review. Plast Reconstr Surg. 2009;124:1808–1819
    1. Scuderi N, Mazzocchi M, Rubino C. Effects of zafirlukast on capsular contracture: Controlled study measuring the mammary compliance. Int J Immunopathol Pharmacol. 2007;20:577–584
    1. Le Louarn C, Buis J, Auclair E. Flector tissugel used to treat capsular contracture after breast augmentation surgery. Aesthetic Plast Surg. 2008;32:453–458

Publication types

MeSH terms