Protective effect of paeoniflorin on Aβ25-35-induced SH-SY5Y cell injury by preventing mitochondrial dysfunction
- PMID: 24263411
- PMCID: PMC11488959
- DOI: 10.1007/s10571-013-0006-9
Protective effect of paeoniflorin on Aβ25-35-induced SH-SY5Y cell injury by preventing mitochondrial dysfunction
Abstract
Alzheimer's disease (AD) is a major neurodegenerative brain disorder affecting about 14 million people worldwide. Aβ-induced cell injury is a crucial cause of neuronal loss in AD, thus the suppression of which might be useful for the treatment of this disease. In this study, we aimed to evaluate the effect of paeoniflorin (PF), a monoterpene glycoside isolated from aqueous extract of Radix Paeoniae Alba, on Aβ25-35-induced cytotoxicity in SH-SY5Y cells. The results showed PF could attenuate or restore the viability loss, apoptotic increase, and ROS production induced by Aβ25-35 in SH-SY5Y cells. In addition, PF strikingly inhibited Aβ25-35-induced mitochondrial dysfunction, which includes decreased mitochondrial membrane potential, increased Bax/Bcl-2 ratio, cytochrome c release and activity of caspase-3 and caspase-9. Therefore, our study provided the first experimental evidence that PF could modulate ROS production and apoptotic mitochondrial pathway in model of neuron injury in vitro and which might provide new insights into its application toward Alzheimer's disease therapy.
Conflict of interest statement
Ke Wang and other co-authors have no conflict of interest
Figures







References
-
- Cao BY, Yang YP, Luo WF, Mao CJ, Han R, Sun X, Cheng J, Liu CF (2010) Paeoniflorin, a potent natural compound, protects PC12 cells from MPP+ and acidic damage via autophagic pathway. J Ethnopharmacol 131(1):122–129 - PubMed
-
- Caroppi P, Sinibaldi F, Fiorucci L, Santucci R (2009) Apoptosis and human diseases: mitochondrion damage and lethal role of released cytochrome C as proapoptotic protein. Curr Med Chem 16(31):4058–4065 - PubMed
-
- Chakravarthy B, Gaudet C, Ménard M, Atkinson T, LaFerla FM, Armato U, Whitfield J (2010) Amyloid-β peptides stimulate the expression of the p75^{NTR} neurotrophin receptor in shsy5y human neuroblastoma cells and ad transgenic mice. J Alzheimers Dis 19(3):915–925 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous