Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Jul;6(7):2106-16.
doi: 10.1523/JNEUROSCI.06-07-02106.1986.

Single-channel recordings of three K+-selective currents in cultured chick ciliary ganglion neurons

Single-channel recordings of three K+-selective currents in cultured chick ciliary ganglion neurons

P I Gardner. J Neurosci. 1986 Jul.

Abstract

Multiple distinct K+-selective channels may contribute to action potential repolarization and afterpotential generation in chick ciliary neurons. The channel types are difficult to distinguish by traditional voltage-clamp methods, primarily because of coactivation during depolarization. I have used the extracellular patch-clamp technique to resolve single-channel K+ currents in cultured chick ciliary ganglion (CG) neurons. Three unit currents selective for K+ ions were observed. The channels varied with respect to unit conductance, sensitivity to Ca2+ ions and voltage, and steady-state gating parameters. The first channel, GK1, was characterized by a unit conductance of 14 pico-Siemens (pS) under physiological recording conditions, gating that was relatively independent of membrane potential and intracellular Ca2+ ions, and single-component open-time distributions with time constants of approximately 9 msec. The second channel, GK2, was characterized by a unit conductance of 64 pS under physiological recording conditions and gating that was affected by membrane potential but was not dependent on the activity of intracellular Ca2+ ions. Open-time distributions indicated 2 open states, with open-time constants of 0.09 (61%) and 0.35 (39%) msec, at +40 mV membrane potential. The third channel, GKCa2+, was identified in isolated patch recordings in which the concentration of internal Ca2+ was 10(-7) M or greater, which was an absolute prerequisite for channel opening. GKCa2+ was characterized by a unit conductance of 193 pS in symmetrical 0.15 M KCl solutions, an open-state probability that was a function not only of [Ca2+]i, but also of membrane potential, and single-component open-time distribution with a time constant of 1.11 msec at -10 mV patch potential. These results suggest the presence of at least 3 distinct K+ channel populations in the membrane of cultured chick CG neurons.

PubMed Disclaimer

Publication types