Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Jun 23;228(1250):71-84.
doi: 10.1098/rspb.1986.0041.

A two-channel electrostatic model of an ionic counterport

A two-channel electrostatic model of an ionic counterport

D T Edmonds. Proc R Soc Lond B Biol Sci. .

Abstract

An alternative model is presented for an ionic counterport that depends upon electrostatic rather than steric forces. It consists of two passive ion channels, one selective for I-type ions and the other for J-type ions. The ions interact electrostatically such that the presence of one type of ion within its channel affects the motion of the second type of ion within its channel. In these circumstances it is possible to arrange that the spontaneous flow of I ions across the membrane, down their electrochemical potential gradient, pumps J ions in the opposite direction across the membrane, against their electrochemical gradient. To illustrate this type of model, a particular example of interionic coupling is described in which both types of ion interact with the electric dipole moments of some membrane-spanning alpha-helical sections of the counterport protein complex. By assuming that a group of four alpha-helices is free to rotate slightly about an axis perpendicular to the membrane, the desired form of coupling is obtained. Making simplifying assumptions, it is possible to calculate the kinetics of the model and to compare these with those expected in real counterports. Finally it is shown that, if the helix group rotation is powered by an external energy source, the pair of coupled passive ion channels can mimic a primary exchange pump such as Na+-K+ ATPase. Here both types of ion are propelled in opposite directions across the membrane and simultaneously against their electrochemical potential gradients.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources