Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Nov 11:4:371.
doi: 10.3389/fimmu.2013.00371. eCollection 2013.

Antigen-Specific T-Cell Activation Independently of the MHC: Chimeric Antigen Receptor-Redirected T Cells

Affiliations
Review

Antigen-Specific T-Cell Activation Independently of the MHC: Chimeric Antigen Receptor-Redirected T Cells

Markus Chmielewski et al. Front Immunol. .

Abstract

Adoptive T-cell therapy has recently shown promise in initiating a lasting anti-tumor response with spectacular therapeutic success in some cases. Specific T-cell therapy, however, is limited since a number of cancer cells are not recognized by T cells due to various mechanisms including the limited availability of tumor-specific T cells and deficiencies in antigen processing or major histocompatibility complex (MHC) expression of cancer cells. To make adoptive cell therapy applicable for the broad variety of cancer entities, patient's T cells are engineered ex vivo with pre-defined specificity by a recombinant chimeric antigen receptor (CAR) which consists in the extracellular part of an antibody-derived domain for binding with a "tumor-associated antigen" and in the intracellular part of a T-cell receptor (TCR)-derived signaling moiety for T-cell activation. The specificity of CAR-mediated T-cell recognition is defined by the antibody domain, is independent of MHC presentation and can be extended to any target for which an antibody is available. We discuss the advantages and limitations of MHC-independent T-cell targeting by an engineered CAR in comparison to TCR modified T cells and the impact of the CAR activation threshold on redirected T-cell activation. Finally we review most significant progress recently made in early stage clinical trials to treat cancer.

Keywords: T-cell receptor; adoptive cell therapy; antibody; antigen-presenting cell; chimeric antigen receptor.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Modular composition of the chimeric antigen receptor (CAR) compared to the T-cell receptor (TCR). The TCR binds to cognate peptide-loaded MHC (pMHC) by the TCR α and β chains, forms the immunological synapse by clustering accessory components including CD3ζ and CD28, and initiates the downstream signaling pathway for T-cell activation through phosphorylation of the CD3ζ ITAM motives. The CAR, in contrast, is composed of one polypeptide chain; the extracellular single chain fragment of variable region (scFv) antibody domain binds to the target antigen in a MHC-independent fashion. Upon CAR clustering, the intracellular CD3ζ chain, with or without costimulation through members of the CD28 family, initiates the downstream signaling for T-cell activation. Co-receptors may modulate CAR activity. In contrast to a first generation (1°) CAR, second (2°), and third (3°) generation CARs harbor in addition one or more costimulatory moieties in their intracellular part.

References

    1. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science (2006) 314:126–910.1126/science.1129003 - DOI - PMC - PubMed
    1. Marr LA, Gilham DE, Campbell JD, Fraser AR. Immunology in the clinic review series; focus on cancer: double trouble for tumours: bi-functional and redirected T cells as effective cancer immunotherapies. Clin Exp Immunol (2012) 167:216–2510.1111/j.1365-2249.2011.04517.x - DOI - PMC - PubMed
    1. Jorritsma A, Gomez-Eerland R, Dokter M, van de Kasteele W, Zoet YM, Doxiadis II, et al. Selecting highly affine and well-expressed TCRs for gene therapy of melanoma. Blood (2007) 110:3564–7210.1182/blood-2007-02-075010 - DOI - PubMed
    1. de Witte MA, Bendle GM, van den Boom MD, Coccoris M, Schell TD, Tevethia SS, et al. TCR gene therapy of spontaneous prostate carcinoma requires in vivo T cell activation. J Immunol (2008) 181:2563–71 - PMC - PubMed
    1. Gross G, Gorochov G, Waks T, Eshhar Z. Generation of effector T cells expressing chimeric T cell receptor with antibody type-specificity. Transplant Proc (1989) 2:127–30 - PubMed