Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Sep 1;137(5):1650-8.

Potassium channels in human NK cells are involved in discrete stages of the killing process

  • PMID: 2427578

Potassium channels in human NK cells are involved in discrete stages of the killing process

N Sidell et al. J Immunol. .

Abstract

Using the whole-cell variation of the patch-clamp technique, we have found a voltage-dependent K+ current in human natural killer (NK) cells. This K+ current is reduced in a dose-dependent manner by a variety of ion-channel blockers (verapamil, quinidine, 4-aminopyridine, Cd2+) at concentrations comparable to those that inhibit natural killing. Pretreatment of target cells with quinidine or verapamil did not significantly reduce their sensitivity to killing, whereas substantial inhibition of killing was observed after pretreatment of effector cells. Both verapamil and quinidine reduced the proportion of effector-target cell conjugates, suggesting that K channels play a role in the "binding" phase of the killing process. By adding EDTA or channel blockers as various times in a Ca-pulse assay system, we have also delineated a blocker-sensitive phase of bound conjugates that strictly corresponds with the Ca-dependent "programming" stage of killing. In contrast, the killer cell-independent stage, which is Ca2+ independent, apparently does not require functioning K channels. Verapamil and quinidine do not affect target cell sensitivity to the putative soluble mediator of natural killing, natural killer cytotoxic factor (NKCF), but inhibit release of NKCF from NK cells. Thus, the data suggest that K channels in NK cells play essential roles in the natural killing process that include events in the "programming-for-lysis" phase leading to release of NKCF.

PubMed Disclaimer

Publication types

LinkOut - more resources