Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 Oct;153(1):64-74.
doi: 10.1007/BF00385319.

Development and storage-protein synthesis in Brassica napus L. embryos in vivo and in vitro

Affiliations

Development and storage-protein synthesis in Brassica napus L. embryos in vivo and in vitro

M L Crouch et al. Planta. 1981 Oct.

Abstract

Immature embryos of Brassica napus were cultured in vitro with and without various concentrations of germination inhibitors, and the progress of embryogeny was monitored by comparing accumulation of storage proteins in culture with the normal accumulation in seeds. The two major B. napus storage proteins (12S and 1.7S) were purified from seed extracts and analyzed by rocket immunoelectrophoresis (12S protein) or by sodium lauryl sulfate polyacrylamide gel electrophoresis (1.7S protein). During embryo development within seeds both the 12S and 1.7S proteins were first detected when the cotyledons were well developed (embryo dry weight, 0.4 mg), and each storage protein accumulated at an average rate of 26 μg d(-1) during maximum deposition. Accumulation of the 1.7S protein stopped when the water content of the embryo began to decline (embryo DW, 2.7 mg), but accumulation of the 12S protein continued until seed maturity (embryo DW, 3.6 mg). At the end of embryo development the 12S and the 1.7S proteins comprised approx. 60 and 20% of the total salt-soluble protein, respectively. When embryos were removed from seeds at day 27, just as storage protein was starting to accumulate, and placed in culture on a basal medium, they precociously germinated within 3d, and incorporation of amino acids into the 12S storage protein dropped from 3% of total incorporation to less than 1%. If 10(-6) M abscisic acid (ABA) was included in the medium, amino-acid incorporation into the 12S protein increased from 3% of total incorporation when embryos were placed into culture to 18%, 5d later, and the accumulation rate (27.1±2.6 μg embryo(-1) d(-1)) matched the maximum rate observed in the seed. High osmotica, such as 0.29 M sucrose or mannitol, added to the basal medium, also inhibited precocious germination, but there was a lag period before 12S-protein synthesis rates equaled the rates on ABA media. These results indicate that some factor in the seed environment is necessary for storage-protein synthesis to proceed, and that ABA is a possible candidate.

PubMed Disclaimer

References

    1. Can J Biochem. 1970 Oct;48(10):1096-103 - PubMed
    1. Nature. 1962 Jul 21;195:281-3 - PubMed
    1. Planta. 1980 Oct;149(5):454-60 - PubMed
    1. Anal Biochem. 1979 Aug;97(1):24-35 - PubMed
    1. Arch Biochem Biophys. 1972 Mar;149(1):323-6 - PubMed

LinkOut - more resources