Insulin receptor-insulin interaction kinetics using multiplex surface plasmon resonance
- PMID: 24277609
- DOI: 10.1002/jmr.2307
Insulin receptor-insulin interaction kinetics using multiplex surface plasmon resonance
Abstract
Type 2 diabetes affects millions of people worldwide, and measuring the kinetics of insulin receptor-insulin interactions is critical to improving our understanding of this disease. In this paper, we describe, for the first time, a rapid, real-time, multiplex surface plasmon resonance (SPR) assay for studying the interaction between insulin and the insulin receptor ectodomain, isoform A (eIR-A). We used a scaffold approach in which anti-insulin receptor monoclonal antibody 83-7 (Abcam, Cambridge, UK) was first immobilized on the SPR sensorchip by amine coupling, followed by eIR-A capture. The multiplex SPR system (ProteOn XPR36™, Bio-Rad Laboratories, Hercules, CA) enabled measurement of replicate interactions with a single, parallel set of analyte injections, whereas repeated regeneration of the scaffold between measurements caused variable loss of antibody activity. Interactions between recombinant human insulin followed a two-site binding pattern, consistent with the literature, with a high-affinity site (dissociation constant K(D1) = 38.1 ± 0.9 nM) and a low-affinity site (K(D2) = 166.3 ± 7.3 nM). The predominantly monomeric insulin analogue Lispro had corresponding dissociation constants K(D1) = 73.2 ± 1.8 nM and K(D2) = 148.9 ± 6.1 nM, but the fit to kinetic data was improved when we included a conformational change factor in which the high-affinity site was converted to the low-affinity site. The new SPR assay enables insulin-eIR-A interactions to be followed in real time and could potentially be extended to study the effects of humoral factors on the interaction, without the need for insulin labeling.
Keywords: Lispro; insulin; insulin receptor; interactions; kinetics; surface plasmon resonance.
Copyright © 2013 John Wiley & Sons, Ltd.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical