Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Feb;31(2):641-8.
doi: 10.3892/or.2013.2872. Epub 2013 Nov 27.

Activated hepatic stellate cells promote hepatocellular carcinoma cell migration and invasion via the activation of FAK-MMP9 signaling

Affiliations

Activated hepatic stellate cells promote hepatocellular carcinoma cell migration and invasion via the activation of FAK-MMP9 signaling

Shaoshan Han et al. Oncol Rep. 2014 Feb.

Abstract

Activated hepatic stellate cells (HSCs) are the major subtype of stromal cells in the liver tumor microenvironment which can promote the growth and migration of hepatocellular carcinoma (HCC) cells. However, the underlying mechanisms by which activated HSCs exert their oncogenic effects are not fully understood to date. In the present study, we investigated the number of activated HSCs and its clinicopathological significance in HCC and uncovered its correlation with focal adhesion kinase (FAK)-MMP9 signaling. A higher number of activated HSCs was associated with tumor invasion of the portal vein, advanced TNM stage and poorer tumor differentiation. The number of activated HSCs was positively correlated with the expression levels of p-FAK and MMP9 in HCC. Furthermore, we studied the effects of activated HSCs on the migration and invasion of HCC cells in vitro. Conditioned medium (CM) from activated HSCs or co-culture with activated HSCs significantly induced the migration and invasion of HCC cells. In addition, activation of FAK-MMP9 signaling in HCC was demonstrated in the presence of activated HSC-CM and of co-culture. Inhibition of FAK-MMP9 signaling in HCC cells with FAK short hairpin RNA (shRNA) abrogated the effects of activated HSCs on HCC cells. Taken together, our data suggest that activated HSCs in the tumor microenvironment promote HCC cell migration and invasion via activation of FAK-MMP9 signaling.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms