Blockade of current through single calcium channels by Cd2+, Mg2+, and Ca2+. Voltage and concentration dependence of calcium entry into the pore
- PMID: 2428920
- PMCID: PMC2228830
- DOI: 10.1085/jgp.88.3.321
Blockade of current through single calcium channels by Cd2+, Mg2+, and Ca2+. Voltage and concentration dependence of calcium entry into the pore
Abstract
We studied the blocking actions of external Ca2+, Mg2+, Ca2+, and other multivalent ions on single Ca channel currents in cell-attached patch recordings from guinea pig ventricular cells. External Cd or Mg ions chopped long-lasting unitary Ba currents promoted by the Ca agonist Bay K 8644 into bursts of brief openings. The bursts appear to arise from discrete blocking and unblocking transitions. A simple reaction between a blocking ion and an open channel was suggested by the kinetics of the bursts: open and closed times within a burst were exponentially distributed, the blocking rate varied linearly with the concentration of blocking ion, and the unblocking rate was more or less independent of the blocker concentration. Other kinetic features suggested that both Cd2+ and Mg2+ lodge within the pore. The unblocking rate was speeded by membrane hyperpolarization or by raising the Ba concentration, as if blocking ions were swept into the myoplasm by the applied electric field or by repulsive interaction with Ba2+. Ca ions reduced the amplitude of unitary Ba currents (50% inhibition at approximately 10 mM [Ca]o with 50 mM [Ba]o) without detectable flicker, presumably because Ca ions exit the pore very rapidly following Ba entry. However, Ca2+ entry and exit rates could be resolved when micromolar Ca blocked unitary Li+ fluxes through the Ca channel. The blocking rate was essentially voltage independent, but varied linearly with Ca concentration (rate coefficient, 4.5 X 10(8) M-1s-1); evidently, the initial Ca2+-pore interaction is outside the membrane field and much faster than the overall process of Ca ion transfer. The unblocking rate did not vary with [Ca]o, but increased steeply with membrane hyperpolarization, as if blocking Ca ions were driven into the cell. We suggest that Ca is both an effective permeator and a potent blocker because it dehydrates rapidly (unlike Mg2+) and binds to the pore with appropriate affinity (unlike Cd2+). There appears to be no sharp dichotomy between "permeators" and "blockers," only quantitative differences in how quickly ions enter and leave the pore.
Similar articles
-
Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells.J Gen Physiol. 1986 Sep;88(3):293-319. doi: 10.1085/jgp.88.3.293. J Gen Physiol. 1986. PMID: 2428919 Free PMC article.
-
Quinine blockade of currents through Ca2+-activated K+ channels in bovine chromaffin cells.J Physiol. 1988 May;399:139-52. doi: 10.1113/jphysiol.1988.sp017072. J Physiol. 1988. PMID: 2457086 Free PMC article.
-
Open-state substructure of inwardly rectifying potassium channels revealed by magnesium block in guinea-pig heart cells.J Physiol. 1988 Mar;397:237-58. doi: 10.1113/jphysiol.1988.sp016998. J Physiol. 1988. PMID: 2457698 Free PMC article.
-
Interactions of divalent cations with single calcium channels from rat brain synaptosomes.J Gen Physiol. 1986 Feb;87(2):201-22. doi: 10.1085/jgp.87.2.201. J Gen Physiol. 1986. PMID: 2419482 Free PMC article. Review.
-
Calcium channels in the cell membrane.Neurosci Behav Physiol. 1986 Sep-Oct;16(5):401-10. doi: 10.1007/BF01185371. Neurosci Behav Physiol. 1986. PMID: 2436085 Review.
Cited by
-
Evaluation of a new calcium containing cardioplegic solution in the isolated rabbit heart in comparison to a calcium-free, low sodium solution.Jpn J Surg. 1991 Mar;21(2):192-200. doi: 10.1007/BF02470908. Jpn J Surg. 1991. PMID: 2051666
-
Intracellular Mg2+ and magnesium depletion in isolated renal thick ascending limb cells.J Clin Invest. 1991 Oct;88(4):1255-64. doi: 10.1172/JCI115429. J Clin Invest. 1991. PMID: 1655827 Free PMC article.
-
Omega-conotoxin blockade distinguishes Ca from Na permeable states in neuronal calcium channels.Pflugers Arch. 1988 Nov;413(1):14-22. doi: 10.1007/BF00581223. Pflugers Arch. 1988. PMID: 2851129
-
Changes in the calcium current of rat heart ventricular myocytes during development.J Physiol. 1988 Dec;406:115-46. doi: 10.1113/jphysiol.1988.sp017372. J Physiol. 1988. PMID: 2855434 Free PMC article.
-
Potassium channel of cardiac sarcoplasmic reticulum is a multi-ion channel.Biophys J. 1989 Jan;55(1):35-45. doi: 10.1016/S0006-3495(89)82778-X. Biophys J. 1989. PMID: 2930823 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous