Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Sep-Oct;8(5):1058-66.

Acute doxorubicin cardiotoxicity: functional, metabolic, and morphologic alterations in the isolated, perfused rat heart

  • PMID: 2429080

Acute doxorubicin cardiotoxicity: functional, metabolic, and morphologic alterations in the isolated, perfused rat heart

P C Pelikan et al. J Cardiovasc Pharmacol. 1986 Sep-Oct.

Abstract

The acute effects of doxorubicin on coronary perfusion and left ventricular pressures and intracellular phosphate metabolite levels, the latter obtained by 31P nuclear magnetic resonance, were measured simultaneously in isolated, isovolumic rat hearts (Langendorf preparation) perfused at constant flow. Nineteen experimental hearts were perfused for 70 min with oxygenated HEPES-buffered solution containing 6 mg/L doxorubicin. These were compared with 18 control hearts (C), perfused under identical conditions but without doxorubicin, by repeated measures analysis of variance. In the experimental group, coronary perfusion pressure steadily increased to 226.3 +/- 13.8% (mean +/- SEM) of initial levels (p less than 0.0001 vs. C). Because flow was constant, the increase in coronary perfusion pressure in experimental hearts indicates a greater than twofold increase in coronary resistance. Intracellular phosphocreatine and ATP decreased to 80.3 +/- 3.9% (p less than 0.005 vs. C) and 82.1 +/- 6.4% (p less than 0.05 vs. C), whereas inorganic phosphate increased to 149.7 +/- 19.1% (p less than 0.05 vs. C) of initial levels, respectively. Accompanying these changes, diastolic pressure steadily increased to 521.7 +/- 91.4% of initial levels (p less than 0.0001 vs. C). Developed pressure initially increased to 107.1 +/- 4.5% at 30 min, and thereafter decreased to 76.2 +/- 6.3% at 70 min (p less than 0.05 vs. C). Typical structural alterations in myocyte nuclei were noted. Cellular calcium was not increased in doxorubicin-exposed hearts. Thus, acute doxorubicin cardiotoxicity is characterized by an increase in coronary resistance and is closely correlated with alterations in ventricular function and a decrease in intracellular high-energy phosphate content.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources