The missing puzzle piece: splicing mutations
- PMID: 24294354
- PMCID: PMC3843248
The missing puzzle piece: splicing mutations
Abstract
Proper gene splicing is highly dependent on the correct recognition of exons. Among the elements allowing this process are the "cis" (conserved sequences) and "trans" (snRNP, splicing factors) elements. Splicing mutations are related with a number of genetic disorders and usually induce exon skipping, form new exon/intron boundaries or activate new cryptic exons as a result of alterations at donor/acceptor sites. They constitute more than 9% of the currently published mutations, but this value is highly underestimated as many of the potential mutations are located in the "cis" elements and should be confirmed experimentally. The most commonly detected splicing mutations are located at donor (5') and acceptor (3') sites. Mutations at the branch point are rare (only over a dozen are known to date), and are mostly searched and detected when no alteration has been detected in the sequenced exons and UTRs. Polypyrimidine tract mutations are equally rare. High throughput technologies, as well as traditional Sanger sequencing, allow detection of many changes in intronic sequences and intron/exon boundaries. However, the assessment whether a mutation affects exon recognition and results in a genetic disorder has to be conducted using molecular biology methods: in vitro transcription of the sequence of interest cloned into a plasmid, with and without alterations, or mutation analysis via a hybrid minigene system. Even though microarrays and new generation sequencing methods pose difficulties in detecting novel branch point mutations, these tools seem appropriate to expand the mutation detection panel especially for diagnostic purposes.
Keywords: Molecular pathology; aberrant splicing; branch point; mutations.
Similar articles
-
Computational analysis of splicing errors and mutations in human transcripts.BMC Genomics. 2008 Jan 14;9:13. doi: 10.1186/1471-2164-9-13. BMC Genomics. 2008. PMID: 18194514 Free PMC article.
-
Intronic PAH gene mutations cause a splicing defect by a novel mechanism involving U1snRNP binding downstream of the 5' splice site.PLoS Genet. 2018 Apr 23;14(4):e1007360. doi: 10.1371/journal.pgen.1007360. eCollection 2018 Apr. PLoS Genet. 2018. PMID: 29684050 Free PMC article.
-
Splicing mutations in human genetic disorders: examples, detection, and confirmation.J Appl Genet. 2018 Aug;59(3):253-268. doi: 10.1007/s13353-018-0444-7. Epub 2018 Apr 21. J Appl Genet. 2018. PMID: 29680930 Free PMC article. Review.
-
Splicing mutations in inherited retinal diseases.Prog Retin Eye Res. 2021 Jan;80:100874. doi: 10.1016/j.preteyeres.2020.100874. Epub 2020 Jun 15. Prog Retin Eye Res. 2021. PMID: 32553897 Review.
-
Cryptic splice activation but not exon skipping is observed in minigene assays of dystrophin c.9361+1G>A mutation identified by NGS.J Hum Genet. 2017 Apr;62(5):531-537. doi: 10.1038/jhg.2016.162. Epub 2017 Jan 19. J Hum Genet. 2017. PMID: 28100912
Cited by
-
CRISPR-induced exon skipping is dependent on premature termination codon mutations.Genome Biol. 2018 Oct 17;19(1):164. doi: 10.1186/s13059-018-1532-z. Genome Biol. 2018. PMID: 30333044 Free PMC article.
-
RNA Sequencing for Elucidating an Intronic Variant of Uncertain Significance (SDHD c.314+3A>T) in Splicing Site Consensus Sequences.Ann Lab Med. 2022 May 1;42(3):376-379. doi: 10.3343/alm.2022.42.3.376. Ann Lab Med. 2022. PMID: 34907111 Free PMC article. No abstract available.
-
A novel mutation deep within intron 7 of the GBA gene causes Gaucher disease.Mol Genet Genomic Med. 2020 Mar;8(3):e1090. doi: 10.1002/mgg3.1090. Epub 2020 Jan 14. Mol Genet Genomic Med. 2020. PMID: 31943857 Free PMC article.
-
Mutation in the Endo-β-1,4-glucanase (KORRIGAN) Is Responsible for Thick Leaf Phenotype in Sorghum.Plants (Basel). 2022 Dec 15;11(24):3531. doi: 10.3390/plants11243531. Plants (Basel). 2022. PMID: 36559643 Free PMC article.
-
In Vivo Analysis of Disease-Associated Point Mutations Unveils Profound Differences in mRNA Splicing of Peripherin-2 in Rod and Cone Photoreceptors.PLoS Genet. 2016 Jan 21;12(1):e1005811. doi: 10.1371/journal.pgen.1005811. eCollection 2016 Jan. PLoS Genet. 2016. PMID: 26796962 Free PMC article.
References
-
- Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigo R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu X. The sequence of the human genome. Science. 2001;291:1304–1351. - PubMed
-
- Patel AA, Steitz JA. Splicing double: insights from the second spliceosome. Nat Rev Mol Cell Biol. 2003;4:960–970. - PubMed
-
- Maroney PA, Romfo CM, Nilsen TW. Functional recognition of 5’ splice site by U4/U6. U5 tri-snRNP defines a novel ATP-dependent step in early spliceosome assembly. Mol Cell. 2000;6:317–328. - PubMed
-
- Valadkhan S, Manley JL. Splicing-related catalysis by protein-free snRNAs. Nature. 2001;413:701–707. - PubMed
-
- Sanford JR, Caceres JF. Pre-mRNA splicing: life at the centre of the central dogma. J Cell Sci. 2004;117:6261–6263. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources